Совет 1: Как найти высоту усеченного конуса

Если вблизи вершины конуса провести сечение, можно получить идентичную, но иную по форме и размерам фигуру, называемую усеченным конусом. Она имеет не один, а два радиуса, один из которых меньше другого. Как и у обычного конуса, у этой фигуры имеется высота.
Инструкция
1
Перед нахождением высоты усеченного конуса ознакомьтесь с его определением. Усеченным конусом называется фигура, которая образована в результате перпендикулярного сечения плоскости обыкновенного конуса, при условии, что это сечение параллельно его основанию. Данная фигура имеет три характеристики:
- r1 - наибольший радиус;
- r2 - наименьший радиус;
- h - высота.Кроме того, как и у обычного конуса, у усеченного имеется так называемая образующая, обозначаемая буквой l. Обратите внимание на внутреннее сечение конуса: оно представляет собой равнобедренную трапецию. Если ее вращать вокруг своей оси, получится усеченный конус с теми же параметрами. В данном случае, линия, делящая равнобедренную трапецию на две других, меньшего размера, совпадает с осью симметрии и с высотой конуса. Другая боковая сторона является образующей конуса.
2
Зная радиусы конуса и его высоту, можно найти его объем. Он вычисляется следующим образом:V=1/3πh(r1^2+r1*r2+r2^2)Если известны два радиуса конуса, а также его объем, этого достаточно, чтобы найти и высоту фигуры:h=3V/π(r1^2+r1*r2+r2^2).В том случае, если в условии задачи даны диаметры окружностей, а не радиусы, данное выражение приобретает несколько иной вид:h=12V/π(d1^2+d1*d2+d2^2).
3
Зная образующую конуса и угол между ней и основанием данной фигуры, также можно найти ее высоту. Для этого нужно из другой вершины трапеции провести проекцию к большему радиусу, чтобы получился небольшой прямоугольный треугольник. Проекция будет равна высоте усеченного конуса. Если известна образующая l и угол, высота определите по следующей формуле:h=l*sinα.
4
Если по условию задачи известна лишь площадь сечения конуса, найти высоту невозможно, если неизвестны оба его радиуса.

Совет 2: Как найти образующую усеченного конуса

Усеченным конусом называется геометрическое тело, которое получилось в результате сечения полного конуса плоскостью, параллельной его основанию. Согласно другому определению, усеченный конус образован вращением прямоугольной трапеции вокруг той ее боковой стороны, которая перпендикулярна основаниям. Вторая боковая сторона при этом является образующей. Вычислять ее необходимо так же, как и боковую сторону прямоугольной трапеции.
Вам понадобится
  • - усеченный конус с заданными параметрами;
  • - линейка;
  • - карандаш;
  • - калькулятор;
  • - теорема Пифагора;
  • - теоремы синусов и косинусов.
Инструкция
1
Сделайте чертеж. Обозначьте на нем заданные размеры усеченного конуса. Его можно построить по нескольким параметрам. Вам должны быть известны радиусы основания и высота. Могут быть и другие наборы данных — например, радиусы обоих оснований и угол наклона образующей к одному из них. Могут быть заданы высота, угол наклона и один из радиусов. Если вы пока еще не знаете нужных для построения точного чертежа параметров, начертите конус приблизительно и обозначьте имеющиеся условия.
2
Постройте осевое сечение. Оно представляет собой равнобедренную трапецию ABCD, параллельные стороны которой являются диаметрами основания, а боковые — образующими. Обозначьте точки пересечения оси с основаниями усеченного конуса как O' и O''. Ось О'О'' одновременно является и высотой прямого усеченного конуса. Обозначьте радиус нижнего основания как R, а верхнего — как r. Образующую CD обозначьте как L.
3
Выполните дополнительное построение. Начертите из точки C высоту к радиусу нижнего основания. Она будет параллельная и равна оси O'O''. Точку пересечения ее с плоскостью нижнего основания обозначьте как N, а саму высоту — h. У вас получился прямоугольный треугольник CND.
4
Посмотрите, какие данные для вычисления гипотенузы этого треугольника у вас имеются и найдите недостающие. При условии, что даны оба радиуса, найдите сторону DN. Она равна разности радиусов R и r. То есть, согласно теореме Пифагора, сторона L в данном случае равна квадратному корню из суммы квадратов высоты и разности радиусов или L = √h2+(R-r)2.
5
Если даны высота h и угол наклона образующей к основанию, найдите образующую L по теореме синусов. Она равна дроби, в числителе которой будет известный катет h, а в знаменателе — синус противолежащего ей угла СDN.
6
При условии, что даны радиус верхней окружности, высота и угол BCD, вычислите сначала нужный вам угол наклона образующей к нижнему основанию. Вспомните, чему равна сумма углов выпуклого четырехугольника. Она равна 360°. У прямоугольной трапеции O'O''CD вам известны три угла. Найдите по ним четвертый и по его синусу — образующую.
Видео по теме
Источники:
  • образующая усеченного конуса
Источники:
  • как найти высоту конуса зная диаметр
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500