Совет 1: Как найти объём квадрата

Очень часто школьники делают запросы в поисковой системе: как найти объем квадрата. Ответ может быть только один: это невозможно. Квадрат - двумерная фигура (два параметра: длина и ширина). Для вычисления объема необходимо наличие третьей характеристики: высоты. Возможно, имеется ввиду вычисление площади квадрата, его периметра или вычисление объема и площади поверхности куба.
Инструкция
1
Квадрат - равносторонний четырехугольник, в котором каждый угол равен 90°. Чтобы найти площадь (S) нужно умножить его длину (l) на ширину (b). Так как в этой фигуре длина и ширина равны, то достаточно знать одну из величин. Единицы измерения площади: см?, м?, км? и т.д.Например: длина одной стороны квадрата = 5 см. Нужно вычислить площадь. Найдите ее по формуле: S = l * b.
S = 5см * 5см.
S = 25см?.
Ответ: площадь квадрата со стороной 5 см равна 25 см?.
2
Куб - многогранник, в котором каждая грань – квадрат. Куб имеет двенадцать ребер, которые равны друг другу (т.е длина, ширина и высота одной грани – это длина (высота) ребра) и шесть одинаковых сторон. Чтобы найти объем куба, необходимо перемножить три его ребра (а). Единицы измерения объема: см?, дм?, м? и т.п.Например: длина ребра 5 см. Нужно найти объем куба. Рассчитайте по формуле:
V = а * а * а или V = a?.
V = 5см * 5см * 5 см.
V = 125 см?
Ответ: объем куба с длиной ребра 5 см равен 125 см?.
3
Если необходимо вычислить площадь всех сторон куба, то сначала найдите площадь одной стороны, а потом суммируйте площади всех шести сторон. Например: известно, что длина одной грани куба 5 см. Нужно найти площадь его поверхности. Решение имеет вид :
1. S = 5см*5 см = 25см?
2. ? = S+ S+ S+ S+ S+ S или S? =6*S
S?= 6*25см? = 150см?
Ответ: площадь поверхности куба с длиной ребра 5 см - 150см?Если требуется найти одну из геометрических характеристик, зная объем куба или площадь квадрата, то из значения объема извлекается кубический корень, а из значения площади - квадратный.
4
Периметр квадрата представляет собой сумму длин всех сторон. Т.е. нужно сложить значения четырех его длин.Например: длина квадрата 5 см. Вычислите периметр. Для вычисления периметра любого прямоугольника можно воспользоваться формулой: P = 2*(l+b).
Для квадрата формула имеет упрощенный вид: P = 4*l
P = 4*5см = 20см
Ответ: периметр квадрата длиной 5см – 20см.

Совет 2: Как найти длину квадрата

Периметром называют общую длину границы фигуры чаще всего на плоскости. Квадрат — правильный четырехугольник или ромб, у которого все углы прямые, или параллелограмм, у которого все стороны и углы равны.
Вам понадобится
  • Знания по геометрии.
Инструкция
1
Периметр квадрата равен сумме длин его сторон. Так как квадрат, по своей сути, есть четырехугольник, то и сторон у него четыре, а значит периметр равен сумме длин четырех сторон или P = a+b+c+d.
2
Квадрат, как видно из определения, правильная геометрическая фигура, а это значит, что все его стороны равны. Значит a=b=c=d. Следовательно P = a+a+a+a или P = 4*a.
3
Пусть сторона квадрата равна 4, то есть a=3. Тогда периметр или длина квадрата, по полученной формуле, будет равен P = 4*3 или P=12. Число 12 и будет являться длиной или, что одно и тоже, периметром квадрата.
Видео по теме
Обратите внимание
Периметр квадрата величина всегда положительная, как и любая другая длина.
Совет полезен?
Аналогичным образом можно найти и периметр ромба, так как квадрат является частным случаем ромба с прямыми углами.

Совет 3: Как найти длину и ширину периметра

О том, что такое периметр, каждый из нас узнал еще в младших классах. нахождением сторон квадрата при известном периметре проблем обычно не возникает даже у тех, кто закончил школу давно и успел забыть курс математики. Однако решить аналогичную задачу в отношении прямоугольника или прямоугольного треугольника удается без подсказки не всем.
Инструкция
1
Как решить задачу по геометрии, в условии которой приведены только периметр и углы? Конечно, если речь идет о остроугольном треугольнике или многоугольнике, то такую задачу без знания длины одной из сторон решить невозможно. Однако, если речь идет о прямоугольном треугольнике или прямоугольнике, то по заданному периметру можно найти его стороны. Прямоугольник имеет длину и ширину. Если провести диагональ прямоугольника, можно обнаружить, что она разбивает прямоугольник на два прямоугольных треугольника. Диагональ является гипотенузой, а длина и ширина - катетами этих треугольников. У квадрата, являющегося частным случаем прямоугольника, диагональ является гипотенузой прямоугольного равнобедренного треугольника.
2
Предположим, что имеется прямоугольный треугольник со сторонами a, b и c, у которого один из углов равен 30 , а второй 60. На рисунке видно, что a = c*sin?, а b = c*cos?. Зная, что периметр любой фигуры, в том числе и треугольника, равен сумме всех его сторон, получаем:a+b+c=c*sin ?+c*cos+c=pИз этого выражения можно найти неизвестную сторону c, которая является гипотенузой для треугольника. Так как угол ? = 30, после преобразования получим:c*sin ?+c*cos ?+c=c/2+c*sqrt(3)/2+c=pОтсюда следует, что с=2p/[3+sqrt(3)]Соответственно a = c*sin ?=p/[3+sqrt(3)],b=c*cos ?=p*sqrt(3)/[3+sqrt(3)]
Как найти <strong>длину</strong> и <b>ширину</b> <em>периметра</em>
3
Как уже сказано выше, диагональ прямоугольника делит его на два прямоугольных треугольника с углами 30 и 60 градусов. Поскольку периметр прямоугольника равен p=2(a + b), ширину a и длину b прямоугольника можно найти, исходя из того, что диагональ является гипотенузой прямоугольных треугольников:a = p-2b/2=p[3- sqrt(3)]/2[3+sqrt (3)]
b= p-2a/2=p[1 +sqrt(3) ]/2[3+ sqrt(3)]Эти два уравнения выражены через периметр прямоугольника. По ним вычисляются длина и ширина этого прямоугольника с учетом получившихся углов при проведении его диагонали.
Видео по теме
Обратите внимание
Как найти длину прямоугольника,если известен периметр и ширина? Вычесть из периметра удвоенную ширину, тогда получим удвоенную длину. Потом делим её пополам, чтобы найти длину.
Совет полезен?
Еще из начальной школы многие помнят, как найти периметр любой геометрической фигуры: достаточно узнать длину всех ее сторон и найти их сумму.  Известно, что в такой фигуре, как прямоугольник, длины сторон равны попарно. Если ширина и высота прямоугольника имеют одинаковую длину, то он называется квадратом. Обычно длиной прямоугольника называют наибольшую из сторон, а шириной – наименьшую.
Источники:
  • что такое ширина периметра

Совет 4: Как найти площадь и объем куба

Куб - это прямоугольный параллелепипед, все ребра которого равны. Поэтому общая формула для объема прямоугольного параллелепипеда и формула для площади его поверхности в случае куба упрощаются. Также объем куба и его площадь поверхности можно найти, зная объем шара, вписанного в него, или шара, описанного вокруг него.
Вам понадобится
  • длина стороны куба, радиус вписанного и описанного шара
Инструкция
1
Объем прямоугольного параллелепипеда равен: V = abc - где a, b, c - его измерения. Поэтому объем куба равен V = a*a*a = a^3, где a - длина стороны куба.Площадь поверхности куба равна сумме площадей всех его граней. Всего у куба шесть граней, поэтому площадь его поверхности равна S = 6*(a^2).
2
Пусть шар вписан в куб. Очевидно, диаметр этого шара будет равен стороне куба. Подставляя длину диаметра в выражения для объема вместо длины ребра куба и используя, что диаметр равен удвоенному радиусу, получим тогда V = d*d*d = 2r*2r*2r = 8*(r^3), где d - диаметр вписанной окружности, а r - радиус вписанной окружности.Площадь поверхности куба тогда будет равна S = 6*(d^2) = 24*(r^2).
3
Пусть шар описан вокруг куба. Тогда его диаметр будет совпадать с диагональю куба. Диагональ куба проходит через центр куба и соединяет две его противоположные точки.
Рассмотрите для начала одну из граней куба. Ребра этой грани являются катетами прямоугольного треугольника, в котором диагональ грани d будет гипотенузой. Тогда по теореме Пифагора получим: d = sqrt((a^2)+(a^2)) = sqrt(2)*a.
4
Затем рассмотрите треугольник в котором гипотенузой будет диагональ куба, а диагональ грани d и одно из ребер куба a - его катетами. Аналогично, по теореме Пифагора получим: D = sqrt((d^2)+(a^2)) = sqrt(2*(a^2)+(a^2)) = a*sqrt(3).
Итак, по выведенной формуле диагональ куба равна D = a*sqrt(3). Отсюда, a = D/sqrt(3) = 2R/sqrt(3). Следовательно, V = 8*(R^3)/(3*sqrt(3)), где R - радиус описанного шара.Площадь поверхности куба равна S = 6*((D/sqrt(3))^2) = 6*(D^2)/3 = 2*(D^2) = 8*(R^2).
Источники:
  • объем куба равен

Совет 5: Как найти объём фигуры

Фигура - это термин, применяемый к разнообразным множествам точек, которые можно представить состоящими из конечного числа точек, линий или поверхностей. Примеры фигур: куб, шар, цилиндр, пирамида, конус. Объем фигуры - это количественная характеристика пространства, занимаемого фигурой. Измеряется он в кубических метрах и кубических сантиметрах. Нужно знать формулы объемов фигур и уметь их применять, так как это основы стереометрии.
Вам понадобится
  • Линейка, калькулятор.
Инструкция
1
Сначала определите, какая фигура находится перед вами. Это может быть куб, шар, цилиндр, пирамида, конус. Исходя из этого, найдите объем фигуры.
2
Если вы определили, что перед вами куб. Куб - это правильный многогранник, каждая грань которого представляет собой квадрат. Чтобы найти его объем, измерьте сторону куба линейкой и возведите полученное число в куб.
3
Если вы определили, что перед вами шар. Шар - это совокупность всех точек пространства, которые находятся на расстоянии не большем заданного от центра. Чтобы найти его объем, умножьте 4/3 числа «пи» на радиус шара в кубе или 1/6 «пи» на диаметр в кубе.
4
Если вы определили, что перед вами цилиндр. Цилиндр - это геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими ее. Чтобы найти его объем, умножьте пи на радиус цилиндра в квадрате и высоту.
5
Если вы определили, что перед вами пирамида. Пирамида - это многогранник, основание которого - многоугольник, а остальные грани - треугольники, имеющие общую вершину. Чтобы найти ее объем, умножьте 1/3 стороны основания пирамиды на ее высоту.
6
Если вы определили, что перед вами конус. Конус - это тело, полученное объединением всех лучей, исходящих из одной точки проходящих через плоскую поверхность. Чтобы найти его объем, умножьте 1/3 «пи» на радиус конуса в квадрате и его высоту.Теперь вы знаете, как находить объем той или иной фигуры. Эти знания вам пригодятся на уроках геометрии в школе, так как это основа стереометрии, также при сдаче ЕГЭ по математике. Но помните! Если все известные величины вам даны в метрах, то и объем фигуры получится в метрах кубических.
Видео по теме
Источники:
  • формула объёма квадрата
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500