Совет добавлен

Как решать уравнения с корнями

Иногда в уравнениях встречается знак корня. Многим школьникам кажется, что решать такие уравнения "с корнями" или, правильнее выражаясь, иррациональные уравнения очень сложно, но это не так.
Как решать уравнения с корнями
Инструкция
1
В отличие от других типов уравнений, например, квадратных или систем линейных уравнений, для решения уравнений с корнями, или точнее, иррациональных уравнений, не существует стандартного алгоритма. В каждом конкретном случае необходимо подобрать наиболее подходящий метод решения, исходя из «внешнего вида» и особенностей уравнения.

Возведение частей уравнения в одинаковую степень.

Чаще всего для решения уравнений с корнями (иррациональных уравнений) применяется возведение обеих частей уравнения в одну и ту же степень. Как правило, в степень, равную степени корня (в квадрат для корня квадратного, в куб для корня кубического). При этом следует иметь ввиду, что при возведении левой и правой части уравнения в четную степень у него могут появиться «лишние» корни. Поэтому, в этом случае следует проверять полученные корни путем подстановки их в уравнение. Особое внимание при решении уравнений с квадратными (четными) корнями следует уделить области допустимых значений переменной (ОДЗ). Иногда одной только оценки ОДЗ достаточно для решения или существенного «упрощения» уравнения.

Пример. Решить уравнение:

√(5х-16)=х-2

Возводим обе части уравнения в квадрат:

(√(5х-16))²=(х-2)², откуда последовательно получаем:

5х-16=х²-4х+4

х²-4х+4-5х+16=0

х²-9х+20=0

Решая полученное квадратное уравнение, находим его корни:

х=(9±√(81-4*1*20))/(2*1)

х=(9±1)/2

х1=4, х2=5

Подставив оба найденных корня в исходное уравнение, получаем верное равенство. Следовательно оба числа являются решениями уравнения.
2
Метод введения новой переменной.

Иногда найти корни «уравнения с корнями» (иррационального уравнения) удобнее методом введения новых переменных. Фактически, суть этого метода сводится просто к более компактной записи решения, т.е. вместо того, чтобы каждый раз писать громоздкое выражение, его заменяют условным обозначением.

Пример. Решить уравнение: 2х+√х-3=0

Можно решить данное уравнение и возведением обеих частей в квадрат. Однако, сами вычисления при этом будут выглядеть довольно-таки громоздко. При введении новой переменной процесс решения получится намного элегантнее:

Введем новую переменную: у=√х

После чего получаем обыкновенное квадратное уравнение:

2у²+у-3=0, с переменной у.

Решив полученное уравнение, находим два корня:

у1=1 и у2=-3/2,

подставляя найденные корни в выражение для новой переменной (у), получаем:

√х=1 и √х=-3/2.

Так как значение квадратного корня не может быть отрицательным числом (если не затрагивать область комплексных чисел), то получаем единственное решение:

х=1.
Полезен совет?
Видео по теме
Источники
  • решение квадратных корней
Найдите сами
Поделитесь:
Добавить комментарий
Осталось символов: 500
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?