Совет 1: Как вычислить сторону равнобедренного треугольника

Равнобедренным, или равнобоким называют треугольник, у которого длины двух сторон одинаковы. При необходимости вычисления длины одной из сторон такой фигуры можно использовать знание величин углов в ее вершинах в сочетании с длиной одной из сторон или радиусом описанной окружности. Эти параметры многоугольника связаны между собой теоремами синусов, косинусов и некоторыми другими постоянными соотношениями.
Инструкция
1
Для вычисления длины боковой стороны равнобедренного треугольника (b) по известной из условий длине основания (a) и величине прилегающего к нему угла (α) используйте теорему косинусов. Из нее вытекает, что вам следует разделить длину известной стороны на удвоенный косинус приведенного в условиях угла: b = a/(2*cos(α)).
2
Ту же теорему применяйте и для обратной операции - вычисления длины основания (a) по известной длине боковой стороны (b) и величине угла (α) между этими двумя сторонами. В этом случае теорема позволяет получить равенство, правая часть которого содержит удвоенное произведение длины известной стороны на косинус угла: a = 2*b*cos(α).
3
Если кроме длин боковых сторон (b) в условиях приведена величина угла между ними (β), для расчета длины основания (a) воспользуйтесь теоремой синусов. Из нее вытекает формула, согласно которой следует удвоенную длину боковой стороны умножить на синус половины известного угла: a = 2*b*sin(β /2).
4
Теорему синусов можно использовать и для нахождения длины боковой стороны (b) равнобедренного треугольника, если известна длина основания (a) и величина противолежащего ему угла (β). В этом случае удвойте синус половины известного угла и разделите на получившееся значение длину основания: b = a/(2*sin(β/2)).
5
Если около равнобедренного треугольника описана окружность, радиус которой (R) известен, для вычисления длин сторон нужно знать величину угла в одной из вершин фигуры. Если в условиях приведена информация об угле между боковыми сторонами (β), вычисляйте длину основания (a) многоугольника удвоением произведения радиуса на значение синуса этого угла: a = 2*R*sin(β). Если же дана величина угла при основании (α), для нахождения длины боковой стороны (b) просто замените угол в этой формуле: b = 2*R*sin(α).

Совет 2: Как вычислить сторону треугольника

В общем случае, т.е. когда нет данных о том, является ли треугольник равносторонним, равнобедренным, прямоугольным, приходится использовать тригонометрические функции для вычисления длин его сторон. Правила их применения определяются теоремами, которые так и названы - теорема синусов, косинусов и тангенсов.
Инструкция
1
Один из способов вычисления длин сторон произвольного треугольника предполагает использование теоремы синусов. Согласно ей соотношения длин сторон и синусов противолежащих им углов треугольника равны. Это позволяет вывести формулу длины стороны для тех случаев, когда из условий задачи известна хотя бы одна сторона и два угла в вершинах фигуры. Если ни один из этих двух углов (α и β) не лежит между известной стороной А и вычисляемой В, то умножьте длину известной стороны на синус прилегающего к ней известного угла β и разделите на синус другого известного угла а: В = А*sin(β)/sin(α).
2
Если один (γ) из двух (α и γ) известных углов образован сторонами, длина одной из которых (А) дана в условиях, а вторую (В) требуется вычислить, то примените ту же теорему. Решение можно свести к формуле, полученной в предыдущем шаге, если вспомнить еще и теорему о сумме углов в треугольнике - эта величина всегда равна 180°. В формуле неизвестен угол β, который по этой теореме можно вычислить, если отнять от 180° величины двух известных углов. Подставьте это значение в равенство, и вы получите формулу В = А*sin(180°-α-γ)/sin(α).
3
Для исходных условий, в которых даны длины двух сторон (А и В) и величина угла между ними (γ), подходит теорема косинусов, позволяющая найти длину третьей стороны (С). Для этого длины известных сторон возведите в квадрат и сложите, а от полученного результата отнимите их удвоенное произведение, умноженное на косинус угла известной величины. Из полученного таким способом числа надо извлечь квадратный корень: С = √(А²+В²-2*А*В*cos(γ)).
4
Если треугольник можно вписать в окружность известного радиуса R, а в условиях дана величина угла α, лежащего напротив стороны А, длину которой надо вычислить, то формула будет достаточно простой. Найдите произведение радиуса на синус известного угла и удвойте результат: А = 2*R*sin(α).
Видео по теме
Видео по теме
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500