Совет 1: Как определить, лежат ли точки на одной прямой

Если вам даны две точки, то вы можете смело заявить, что они лежат на одной прямой, так как через любые две точки можно провести прямую. Но как же выяснить, лежат ли все точки на прямой, если точек три, четыре или больше? Доказать принадлежность точек одной прямой можно несколькими способами.
Вам понадобится
  • Точки, заданные координатами.
Инструкция
1
Если вам даны точки с координатами (х1, у1, z1), (х2, у2, z2), (х3, у3, z3), найдите уравнение прямой, используя координаты любых двух точек, например, первой и второй. Для этого подставьте соответствующие значения в уравнение прямой: (х-х1)/(х2-х1)=(у-у1)/(у2-у1)=(z-z1)/(z2-z1). Если один из знаменателей равен нулю, просто приравняйте к нулю числитель.
2
Найти уравнение прямой, зная две точки с координатами (х1, у1), (х2, у2), еще проще. Для этого подставьте значения в формулу (х-х1)/(х2-х1)=(у-у1)/(у2-у1).
3
Получив уравнение прямой, проходящей через две точки, подставьте значения координат третьей точки в него вместо переменных х и у. Если равенство получилось верное, значит все три точки лежат на одной прямой. Точно так же можете проверять принадлежность этой прямой других точек.
4
Проверьте принадлежность всех точек прямой, проверив равенство тангенсов углов наклона соединяющих их отрезков. Для этого проверьте, будет ли верным равенство (х2-х1)/(х3-х1)=(у2-у1)/(у3-у1)=(z2-z1)/(z3-z1). Если один из знаменателей равен нулю, то для принадлежности всех точек одной прямой должно выполняться условие х2-х1=х3-х1, у2-у1=у3-у1, z2-z1=z3-z1.
5
Еще один способ проверить принадлежность трех точек прямой – посчитайте площадь треугольника, который они образуют. Если все точки лежат на прямой, то его площадь будет равна нулю. Подставьте значения координат в формулу: S=1/2((х1-х3)(у2-у3)-(х2-х3)(у1-у3)). Если после всех вычислений вы получили ноль - значит, три точки лежат на одной прямой.
6
Чтобы найти решение задачи графическим способом, постройте координатные плоскости и найдите точки по указанным координатам. Затем проведите прямую через две из них и продолжите до третьей точки, посмотрите, пройдет ли она через нее. Учтите, этот способ подходит только для точек, заданных на плоскости с координатами (х, у), если же точка задана в пространстве и имеет координаты (х, у, z), то такой способ неприменим.

Совет 2: Как проверить, что точки не лежат на одной прямой

На основании аксиомы, описывающей свойства прямой: какова бы ни была прямая, есть точки, принадлежащие и не принадлежащие ей. Поэтому вполне логично, что не все точки будут лежать на одной прямой линии.
Вам понадобится
  • - карандаш;
  • - линейка;
  • - ручка;
  • - тетрадь;
  • - калькулятор.
Инструкция
1
Проверить принадлежность точки той либо иной прямой довольно просто. Используйте для этого уравнение прямой. Итак, предположим, что прямая проходит через точки А(x1,y1) и В(x2,y2). Дана точка К(x,y): нужно проверить ее принадлежность прямой. Уравнение линии по двум точкам имеет следующий вид: (x - x1) * (y2 - y1) - (x2 - x1) * (y - y1) = 0.
2
Подставьте значение координат точки К в уравнение. Если (x - x1) * (y2 - y1) - (x2 - x1) * (y - y1) окажется больше нуля, то точка К расположена правее или ниже прямой, проведенной по точкам А и В.
3
В том случае, если (x - x1) * (y2 - y1) - (x2 - x1) * (y - y1) будет меньше нуля, точка К располагается выше или левее линии. Другими словами, только в том случае, если уравнение вида (x - x1) * (y2 - y1) - (x2 - x1) * (y - y1) = 0 справедливо, точки А, В и К будут расположены на одной прямой.
4
В остальных случаях лишь две точки (А и В), которые, по условию задания, лежат на прямой, будут ей принадлежать: через третью точку (точку К) прямая проходить не будет.
5
Рассмотрите второй вариант определения принадлежности точки примой: на этот раз нужно проверить принадлежит ли точка С(x,y) отрезку с концевыми точками В(x1,y1) и А(x2,y2), который является частью прямой z.
6
Точки рассматриваемого отрезка опишите уравнением pOB+(1-p)OА=z, при условии, что 0≤p≤1. ОВ и ОА являются векторами. Если есть такое число p, которое больше или равно 0, но меньше или равно 1, то pOB+(1-p)OА=С, а значит, точка С будет лежать на отрезке АВ. В противном случае, данная точка не будет принадлежать этому отрезку.
7
Распишите равенство pOB+(1-p)OА=С покоординатно: px1+(1-p)x2=x и py1+(1-p)y2=y.
8
Найдите из первого уравнения число р и подставьте его значение во второе равенство. Если равенство будет соответствовать условиям 0≤p≤1, то точка С принадлежит отрезку АВ.
9
Постройте точки по заданным координатам и проведите через них прямую. Это позволит увидеть точки, лежащие на одной прямой, и те точки, что не принадлежат ей.
Обратите внимание
Убедитесь в правильности расчетов!
Совет полезен?
Чтобы найти k - угловой коэффициент прямой, нужно (y2 - y1)/(x2 - x1).
Источники:
  • Алгоритм проверки принадлежности точки многоугольнику. Метод трассировки луча
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500