Совет 1: Как найти неизвестный катет

Катет – это сторона прямоугольного треугольника, прилегающая к прямому углу. Найти его можно, используя теорему Пифагора или тригонометрические отношения в прямоугольном треугольнике. Для этого нужно знать другие стороны или углы этого треугольника.
Как найти неизвестный катет
Вам понадобится
  • - теорема Пифагора;
  • - тригонометрические соотношения в прямоугольном треугольнике;
  • - калькулятор.
Инструкция
1
Если в прямоугольном треугольнике известна гипотенуза и один из катетов, то второй катет найдите, используя теорему Пифагора. Поскольку сумма квадратов катетов a и b, равна квадрату гипотенузы c (c²=a²+b²), то, произведя несложное преобразование, получите равенство для нахождения неизвестного катета. Обозначьте неизвестный катет как b. Для того чтобы найти его, найдите разность квадратов гипотенузы и известного катета, а из результата выделите корень квадратный b=√(c²-a²).
2
Пример. Гипотенуза прямоугольного треугольника равна 5 см, а один из катетов 3 см. Найдите, чему равен второй катет. Подставьте значения в выведенную формулу и получите b=√(5²-3²)=√(25-9) =√16=4 см.
3
Если в прямоугольном треугольнике известна длина гипотенузы и один из острых углов, используйте свойства тригонометрических функций для того, чтобы найти нужный катет. Если нужно найти катет, прилежащий к известному углу, чтобы найти его, используйте одно из определений косинуса угла, которое гласит, что он равен отношению прилежащего катета a к гипотенузе c (cos(α)=a/c). Тогда чтобы найти длину катета, умножьте гипотенузу на косинус прилежащего к данному катету угла a=c∙cos(α).
4
Пример. Гипотенуза прямоугольного треугольника равна 6 см, а его острый угол 30º. Найдите длину катет, прилежащего к этому углу. Этот катет будет равен a=c∙cos(α)=6∙cos(30º)=6∙√3/2≈5,2 см.
5
Если нужно найти катет противолежащий острому углу, используйте ту же методику расчета, только косинус угла в формуле поменяйте на его синус (a=c∙sin(α)). Например, используя условие предыдущей задачи, найдите длину катета, противолежащего острому углу 30º. Использовав предложенную формулу, получите: a=c∙sin(α)= 6∙sin(30º)= 6∙1/2=3 см.
6
Если известен один из катетов и острый угол, то для расчета длины другого используйте тангенс угла, который равен отношению противолежащего катета к прилежащему. Тогда, если катет a является прилежащим к острому углу, найдите его, поделив противолежащий катет b на тангенс угла a=b/tg(α). Если катет a противолежит острому углу, то он равен произведению известного катета b на тангенс острого угла a=b∙tg(α).

Совет 2: Как найти прилежащий катет

Слово «катет» происходит от греческих слов «перпендикуляр» или «отвесный» - это объясняет, почему именно так назвали обе стороны прямоугольного треугольника, составляющие его девяностоградусный угол. Найти длину любого из катетов нетрудно, если известна величина прилегающего к нему угла и еще какой-либо из параметров, так как в этом случае фактически станут известны величины всех трех углов.
Как найти прилежащий катет
Инструкция
1
Если кроме величины прилегающего угла (β) известна длина второго катета (b), то длину катета (a) можно определить как частное от деления длины известного катета на тангенс известного угла: a=b/tg(β). Это вытекает из определения этой тригонометрической функции. Можно обойтись без тангенса, если воспользоваться теоремой синусов. Из нее следует, что отношение длины искомой стороны к синусу противолежащего угла равно отношению длины известного катета к синусу известного угла. Противолежащий искомому катету острый угол можно выразить через известный угол как 180°-90°-β = 90°-β, так как сумма всех углов любого треугольника должна составлять 180°, а по определению прямоугольного треугольника один из его углов равен 90°. Значит, искомую длину катета можно вычислить по формуле a=sin(90°-β)∗b/sin(β).
2
Если известны величина прилегающего угла (β) и длина гипотенузы (c), то длину катета (a) можно вычислить как произведение длины гипотенузы на косинус известного угла: a=c∗cos(β). Это вытекает из определения косинуса, как тригонометрической функции. Но можно воспользоваться, как и в предыдущем шаге, теоремой синусов и тогда длина искомого катета будет равняться произведению синуса разницы между 90° и известным углом на отношение длины гипотенузы к синусу прямого угла. А поскольку синус 90° равен единице, то формулу можно записать так: a=sin(90°-β)∗c.
3
Практические вычисления можно производить, например, при помощи имеющегося в составе ОС Windows программного калькулятора. Для его запуска можно в главном меню на кнопке «Пуск» выбрать пункт «Выполнить», набрать команду calc и нажать кнопку «OK». В открывающемся по умолчанию простейшем варианте интерфейса этой программы тригонометрические функции не предусмотрены, поэтому после его запуска надо щелкнуть в меню раздел «Вид» и выбрать строку «Научный» или «Инженерный» (зависит от используемой версии операционной системы).
Видео по теме

Совет 3: Как найти угол, прилежащий к катету

Две стороны треугольника, образующие его прямой угол, перпендикулярны друг дружке, что и нашло отражение в их греческом названии («катеты»), сегодня используемом повсеместно. К каждой из этих сторон примыкает по два угла, один из которых вычислять нет необходимости (прямой угол), а другой всегда является острым и рассчитать его величину можно несколькими способами.
Как найти угол, прилежащий к катету
Инструкция
1
Если известна величина одного из двух острых углов (β) прямоугольного треугольника, то для нахождения другого (α) больше ничего не нужно. Используйте теорему о сумме углов треугольника в евклидовой геометрии - так как она (сумма) всегда равна 180°, то рассчитайте величину недостающего угла вычитанием величины известного острого угла из 90°: α=90°-β.
2
Если кроме величины одного из острых углов (β) известны длины обоих катетов (А и В), то можно использовать и другой способ вычисления - с помощью тригонометрических функций. Согласно теореме синусов отношения длин каждого из катетов к синусу противолежащего угла одинаковы, поэтому синус нужного угла (α) находите делением длины прилежащего к нему катета на длину второго катета с последующим умножением результата на синус известного острого угла. Тригонометрическая функция, преобразующая значение синуса в соответствующую этому значению величину в угловых градусах, называется арксинусом - примените ее к полученному выражению и вы получите окончательную формулу: α=arcsin(sin(β)*А/В).
3
Если известны лишь длины обоих катетов (А и В), то их соотношения позволят получить тангенс или котангенс (в зависимости от того, что поставить в числитель) вычисляемого угла (α). Применяйте к этим соотношениям соответствующие им обратные функции: α = arctg(А/В) = arcctg(В/А).
4
Если известны только длина (С) гипотенузы (самой длиной стороны) и катета (В), прилежащего к вычисляемому углу (α), то отношение этих длин даст значение косинуса искомого угла. Как и для остальных тригонометрических функций, существует функция обратная косинусу (арккосинус) которая поможет из этого соотношения вывести величину угла в градусах: α=arcsin(В/С).
5
При тех же исходных данных, что и в предыдущем шаге, можно воспользоваться и вовсе экзотической тригонометрической функцией - секанс. Она получается делением длины гипотенузы (С) на длину прилежащего к нужному углу катета (В) - находите арксеканс от этого соотношения дли вычисления величины прилегающего к катету угла: α=arcsес(С/В).
Совет полезен?
Поиск
Добавить комментарий к статье
Осталось символов: 500