Совет 1: Как найти больший угол ромба

Ромбом называют четырехугольник, у которого все стороны одинаковы, а углы не равны. Эта геометрическая фигура обладает уникальными свойствами, которые значительно облегчают расчеты. Чтобы найти ее больший угол, нужно знать еще несколько параметров.
Вам понадобится
  • - таблица синусов;
  • - таблица косинусов;
  • - таблица тангенсов.
Инструкция
1
В условиях задачи может быть указан меньший угол. Вспомните, чему равна сумма углов, прилежащих к одной стороне. Она у любого ромба составляет 180°. То есть вам достаточно из 180° вычесть размер известного угла. Начертите ромб. Обозначьте больший угол как α, а меньший – как β. Формула в этом случае будет выглядеть как α=180°-β.
Постройте ромб с заданной стороной
2
В задаче могут быть указаны также размер стороны и длина одной из диагоналей. В этом случае нужно вспомнить свойства диагоналей ромба. В точке пересечения они делятся пополам. Диагонали перпендикулярны друг другу, то есть при решении задачи можно будет использовать свойства прямоугольных треугольников. Еще одна важная деталь каждая из диагоналей одновременно является и биссектрисой угла.
3
Для наглядности сделайте чертеж. Начертите ромб ABCD. Проведите в нем диагонали d1 и d2. Допустим, известная вам диагональ d1 соединяет меньшие углы. Обозначьте точку их пересечения как О, большие углы ABC и CDA– как α, а меньшие – как β. Каждый из углов делится диагональю пополам. Рассмотрите прямоугольный треугольник АОВ. Вам известны стороны АВ и ОА, равная половине диагонали d1. Они представляют собой гипотенузу и катет противолежащего угла.
4
Вычислите синус угла АВО. Он равен отношению катета ОА к гипотенузе АВ, то есть sinАВО= ОА/АВ. По таблице синусов найдите размер угла. Вспомните, что он равен половине большего угла ромба. Соответственно, для определения искомого полученный размер умножьте на 2.
5
Если в условиях дан размер диагонали d2, соединяющей большие углы, способ решения будет аналогичен предыдущему, только вместо синуса используется косинус – отношение прилежащего катета к гипотенузе.
6
В условиях могут быть заданы только размеры диагоналей. В этом случае тоже понадобится чертеж, но, в отличие от предыдущих задач, он может быть точным. Проведите диагональ d1. Разделите ее пополам. К точке пересечения проведите диагональ d2 так, чтобы она тоже делилась на две равные части. Концы отрезков соедините по периметру. Обозначьте ромб как ABCD, точку пересечения диагоналей – как О.
7
Сторону ромба в данном случае вам вычислять не нужно. У вас образовался прямоугольный треугольник АОВ, у которого вам известны два катета. Отношение противолежащего катета к прилежащему называется тангенсом. Чтобы найти tgАВО, разделите ОА на ОВ. Найдите в таблице тангенсов нужное значение угла, а затем умножьте его на два.
8
Некоторые компьютерные программы позволяют не только вычислить больший угол ромба по заданным параметрам, но и сразу же начертить эту геометрическую фигуру. Это можно сделать, например, в программе AutoCAD. В этом случае таблицы синусов и тангенсов, конечно же, не нужны.

Совет 2: Как вычислить диагонали ромба

Ромб – стандартная геометрическая фигура, состоящая из четырех вершин, углов, сторон, а также двух диагоналей, которые перпендикулярны друг другу. Исходя из этого свойства, можно вычислить их длины по формуле для четырехугольника.
Инструкция
1
Чтобы вычислить диагонали ромба, достаточно воспользоваться общеизвестной формулой, справедливой для любого четырехугольника. Она состоит в том, что сумма квадратов длин диагоналей равна квадрату стороны, умноженному на четыре:d1² + d2² = 4•a².
2
Облегчить решение геометрических задач с этой фигурой поможет знание некоторых свойств, присущих ромбу и связанных с длинами его диагоналей:• Ромб является частным случаем параллелограмма, следовательно, противолежащие стороны у него также попарно параллельны и равны;• Диагонали точкой пересечения делятся пополам, а угол между ними – прямой;• Каждая диагональ делит пополам углы, вершины которых соединяет, являясь их биссектрисами и одновременно медианами треугольников, образованных двумя смежными сторонами ромба и другой диагональю.
3
Формула для диагоналей является прямым следствием из теоремы Пифагора. Рассмотрите один из треугольников, получившихся в результате деления ромба диагоналями на четыре части. Он – прямоугольный, это вытекает из свойств диагоналей ромба, кроме того, длины катетов равны половинам диагоналей, а гипотенуза – это сторона ромба. Значит, согласно теореме:d1²/4 + d2²/4 = a² → d1² + d2² = 4•a².
4
В зависимости от начальных данных задачи, могут быть произведены дополнительные промежуточные действия, чтобы определить неизвестную величину. Например, найдите диагонали ромба, если известно, что одна из них превышает длину стороны на 3 см, а другая в полтора раза больше.
5
Решение.Выразите длины диагоналей через сторону, которая в данном случае неизвестна. Обозначьте ее за x, тогда: d1=x+3; d2=1,5•x.
6
Запишите формулу для диагоналей ромба:d1² + d2² = 4•a²
7
Подставьте полученные выражения и составьте уравнение с одной переменной:(x + 3)² + 9/4•x² = 4•x²
8
Приведите его к квадратному и решите:x² – 8•x – 12 = 0D = 64 + 48 = 110x1 = (8+√110)/2 ≈ 9,2; x2 < 0.Очевидно, что сторона ромба равна 9,2 см. Тогда d1 = 11,2 см; d2 = 13,8 см.
Источники:
  • как найти вторую диагональ ромба

Совет 3: Как найти угол ромба

Ромб образуется из квадрата при растягивании фигуры за вершины, расположенные на одной диагонали. Два угла становятся меньше прямых. Два других угла увеличиваются, превращаясь в тупые.
Инструкция
1
Сумма четырех внутренних углов ромба равна 360°, как у любого четырехугольника. Противоположные углы ромба равны, при этом всегда в одной паре равных углов — углы острые, в другой - тупые. Два угла, прилегающие к одной стороне в сумме составляют развернутый угол. Ромбы с одинаковым размером стороны могут внешне очень сильно отличаться друг от друга. Это различие объясняется разной величиной внутренних углов. Следовательно, для нахождения угла ромба недостаточно знать только его сторону.
2
Достаточным для определения величины углов ромба является знание диагоналей фигуры. После проведения в ромбе обеих диагоналей ромб будет разбит на четыре треугольника. Диагонали ромба расположены под прямым углом, следовательно, полученные треугольники являются прямоугольными. Ромб — симметричная фигура, его диагонали являются одновременно осями симметрии, поэтому все внутренние треугольники равны. Острые углы треугольников, образованных диагоналями ромба, равны половине углов ромба, которые нужно найти.
3
Тангенс острого угла прямоугольного треугольника равен отношению катетов, противолежащего к прилежащему. Половина каждой диагонали ромба является катетом прямоугольного треугольника. Если большую и малую диагонали ромба обозначить d₁ и d₂ соответственно, а углы ромба — А (острый) и В (тупой), то из соотношения сторон в прямоугольных треугольниках внутри ромба следует: tg (A/2)=(d₂/2)/(d₁/2)=d₂/d₁, tg(B/2)=(d₁/2)/(d₂/2)=d₁/d₂.
4
По формуле двойного угла tg (2α) = 2/(сtg α - tg α) найдите тангенсы углов ромба: tg A = 2/((d₁/d₂)-(d₂/d₁)) и tg B =2/((d₂/d₁)-(d₁/d₂)). По тригонометрическим таблицам найдите углы, соответствующие рассчитанным значениям их тангенсов.
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500
к
Honor 6X Premium
новая премиальная версия
узнать больше