Совет 1: Как сложить числа в двоичной системе

Двоичная система счисления - позиционная система счисления с основанием 2. Все числа в это системе записываются с помощью двух символов - 0 и 1. Двоичная система счисления имеет богатую историю и до сих пор используется в вычислительной технике. Именно она дала толчок в развитии кибернетики.
Инструкция
1
При сложении чисел в двоичной системе важно помнить, что она имеет всего два символа - 0 и 1. Никаких других символов быть в ней не может. Поэтому сложение двух единиц 1+1 дает не 2, как в десятичной системе, а 10, так как 10 - это следующее за единицей число в двоичной системе.Необходимо запомнить простейшие правила сложения в двоичной системе: 0+0 = 0, 1+0 = 0+1 = 1, 1+1 = 10. Эти правила необходимы, чтобы складывать числа в двоичной системе в столбик. Как видно, в случае прибавления единицы к единице, единица идет в следующий разряд.Очевидно, что прибавление нуля к любому двоичному числу не изменит это число.
2
Большие двоичные числа удобно складывать в столбик. Правила в двоичной системе аналогичны сложению правилам сложения в столбик в десятичной системе.Пусть складываются числа 1111 и 101. Записываем число с меньшим количеством разрядов 101 под числом 1111 - цифра разряда одного числа должна располагаться над цифрой того же разряда другого числа. Теперь можно складывать эти числа. В первом разряде 1+1 дает 10 - записываете 0 под единицами в первом разряде. Единица из 10 переходит в сумму цифр второго разряда. Во втором разряде 1+0. После прибавления единицы из первого разряда получится тоже 10. Единица переходит уже в третий разряд, а во втором разряде суммы тоже будет ноль. В третьем разряде 1+1+1 (единица перешла сюда!) дает 11. В третьем разряде суммы будет 1, а другая единица из числа 11 перейдет в четвертый разряд. Четвертый разряд имеет только число 1111. 1+1 = 10. Таким образом, 1111+101 = 10100.
3
Рассматриваемый пример можно записать в столбик
1111
+ 101
-----
10100

Совет 2: Как складывать системы счисления

Системы счисления представляют различные варианты записи чисел и устанавливают порядок действий над ними. Наибольшее распространение получили позиционные системы счисления, среди которых, помимо всем известной десятичной системы, можно отметить двоичную, шестнадцатеричную и восьмеричную системы счисления. Сложение в позиционных системах производится с учетом единого правила переполнения разряда и переноса. При этом переполнение разряда происходит при достижении результатом основания числа.
Инструкция
1
Сложите два числа в шестнадцатеричной системе счисления. Для этого запишите числа на листке друг над другом так, чтобы крайние правые символы чисел находились на одном уровне. Возьмите два крайних правых символа и произведите их сложение с учетом таблицы соответствий. То есть для буквенного символа шестнадцатеричного числа найдите его десятичный эквивалент и сложите обычным образом. Например, крайние символы С и 7 при сложении можно расписать 12 + 7, так как буквенное обозначение С соответствует числу 12 в десятичной системе. Получившееся число при сложении (19) следует проверить на переполнение разряда. Разряд 16 меньше 19, следовательно, происходит переполнение и при сложении будет перенос дополнительной единицы в старший разряд. В текущем разряде оставляем число равное разности результата и основания 16 (19-16=3). Запишите под складываемыми числами получившуюся цифру (3).
2
Сложите два следующих числа. К их сумме необходимо прибавить 1 из переполненного предыдущего разряда. При записи получившихся значений учитывайте буквенные обозначения чисел свыше 9 из таблицы соответствий. Так, при сложении 7 и 6 у вас получится число 13, которое в шестнадцатеричной системе имеет буквенное представление D – именно его запишите в результат. При переполнении в данном разряде произведите те же действия, что и в предыдущем шаге.
3
Сложение двух чисел в двоичной системе счисления происходит по аналогичным правилам, только разрядность в данной системе составляет не 16, а 2. Запишите два двоичных числа друг над другом, как указано выше. Таким же образом, начиная справа и сдвигаясь влево, складывайте цифры по порядку. При этом при сложении 1+1 появляется переполнение разряда. Действуя по выше описанному алгоритму, с учетом основания системы 2 в результирующем значении запишите 0 (2-2=0), а в старший разряд перенесите 1. Если в старшем разряде сумма чисел с переносом оказывается равной 3 (1+1+1=3), то в результат записывается 1 (3-2=1) и снова в старший разряд уходит единица. Суммой двоичных чисел будет являться получившаяся запись из 0 и 1 после сложения всех цифр.
Полезный совет
Аналогичным образом происходит сложение чисел во всех позиционных системах счисления.

Совет 3: Как записывать десятичное число в двоичной системе счисления

Десятичная система счисления – одна из самых распространенных в математической теории. Однако с появлением информационных технологий, двоичная система получила не менее широкое распространение, поскольку она является основным способом представления информации в компьютерной памяти.
Инструкция
1
Любая система счисления – это способ записи числа при помощи определенных символов. Существуют позиционные, непозиционные и смешанные системы счисления. Десятичная и двоичная системы являются позиционными, т.е. значение определенной цифры в записи числа определяется в зависимости от того, какую позицию она занимает.
2
Позиции цифр в числе называются разрядами. В десятичной системе счисления эту роль выполняет число 10, т.е. каждая цифра в числе является множителем числа 10 в соответствующей степени. Число разрядов начинается с нуля, а чтение происходит справа налево. Например, число 173 можно прочитать следующим образом: 3*10^0 + 7*10^1 + 1*10^2.
3
В двоичной системе разрядом числа является цифра 2. Таким образом, в записи двоичного числа участвует только два числовых знака: 0 и 1. Например, число 0110 в подробной записи выглядит так: 0*2^0 + 1*2^1 + 1*2^2 + 0*2^3. В десятичной системе это число равнялось бы 6.
4
Преобразование из десятичной системы в двоичную реализуется как для целых чисел, так и для дробных. Перевод целого десятичного числа производится методом последовательного деления его на 2. При этом количество итераций (действий) увеличивается до тех пор, пока частное не станет равно нулю, а итоговое двоичное число записывается в виде полученных остатков справа налево.
5
Например, процедура преобразования числа 19 выглядит так:19/2 = 18/2 + 1 = 9, в остатке – 1, пишем 1;9/2 = 8/2 + 1 = 4, в остатке – 1, пишем 1;4/2 = 2, остаток отсутствует, пишем 0;2/2 = 1, остаток отсутствует, пишем 0;1/2 = 0 + 1, в остатке – 1, пишем 1.Итак, после применения метода последовательного деления к числу 19 получилось двоичное число 10011.
6
При преобразовании дробного десятичного числа в двоичное сначала переводится целая часть. Дробная переводится в двоичный код путем последовательного умножения на 2 до тех пор, пока не получится целая часть, которая даст 1 в двоичном числе. Полученные цифры записываются после запятой слева направо.
7
Например, число 3,4 в переводе в двоичное число выглядит так:3/2 = 2/2 + 1, пишем 1;? = 0 + 1, пишем 1.Итак, целая часть числа 3,4 равна 11 в двоичной системе счисления. Теперь переводим дробную часть 0,4:0,4*2 = 0,8, пишем 0;0,8*2 = 1,6, пишем 1;0,6*2 = 1,2, пишем 1;0,2*2 = 0,4, пишем 0;и т.д.Символьная запись преобразования двух чисел выглядит так:3,4_10 = 11,0110_2.
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500
к
Honor 6X Premium
новая премиальная версия
узнать больше