Совет 1: Как найти угол между векторами

Вектор - это отрезок с заданным направлением. Угол между векторами имеет физическое значение, например при нахождении длины проекции вектора на ось.
Инструкция
1
Угол между двумя ненулевыми векторами определяется с помощью вычисления скалярного произведения. По определению скалярное произведение равно произведению длин векторов на косинус угла между ними. С другой стороны, скалярное произведение для двух векторов a с координатами (x1; y1) и b с координатами (x2; y2) вычисляется по формуле: ab = x1x2 + y1y2. Из этих двух способов нахождения скалярного произведения легко найти угол между векторами.
2
Найдите длины или модули векторов. Для наших векторов a и b: |a| = (x1² + y1²)^1/2, |b| = (x2² + y2²)^1/2.
3
Найдите скалярное произведение векторов, перемножив их координаты попарно: ab = x1x2 + y1y2. Из определения скалярного произведения ab = |a|*|b|*cos α, где α - угол между векторами. Тогда получим, что x1x2 + y1y2 = |a|*|b|*cos α. Тогда cos α = (x1x2 + y1y2)/(|a|*|b|) = (x1x2 + y1y2)/((x1² + y1²)(x2² + y2²))^1/2.
4
Найдите угол α с помощью таблиц Брадиса.
5
В случае трехмерного пространства добавляется третья координата. Для векторов a (x1; y1; z1) и b (x2; y2; z2) формула для косинуса угла представлена на рисунке.
Как найти угол между векторами

Совет 2: Как вычислить угол между векторами

Для решения многих задач, как прикладных, так и теоретических, в физике и линейной алгебре необходимо вычислять угол между векторами. Эта простая на первый взгляд задача способна доставить множество трудностей, если вы четко не усвоите сущность скалярного произведения и какая величина появляется в результате этого произведения.
Инструкция
1
Угол между векторами в векторном линейном пространстве – минимальный угол при повороте, на который достигается сонаправленность векторов. Осуществляется поворот одного из векторов вокруг его начальной точки. Из определения становится очевидно, что значение угла не может превышать 180 градусов (cм. рисунок к шагу).
2
При этом совершенно справедливо предполагается, что в линейном пространстве при осуществлении параллельного переноса векторов угол между ними не меняется. Поэтому для аналитического расчета угла пространственная ориентация векторов не имеет значения.
3
При нахождении угла используйте определение скалярного произведения для векторов. Данная операция обозначается следующим образом (см. рисунок к шагу).
4
Результат скалярного произведения – число, иначе скаляр. Запомните (это важно знать), чтобы не допустить в дальнейших расчетах ошибок. Формула скалярного произведения, расположенных на плоскости либо в пространстве векторов, имеет вид (см. рисунок к шагу).
5
Это выражение справедливо только для ненулевых векторов. Отсюда выразите угол между векторами (см. рисунок к шагу).
6
Если система координат, в которой располагаются векторы, является декартовой, то выражение для определения угла можно переписать в следующем виде (см. рисунок к шагу).
7
Если вектора располагаются в пространстве, то расчет производите аналогичным способом. Единственным отличием будет появление третьего слагаемого в делимом - это слагаемое отвечает за аппликату, т.е. третью компоненту вектора. Соответственно, при вычислении модуля векторов компоненту z также необходимо учесть, тогда для векторов, расположенных в пространстве, последнее выражение преобразуется следующим образом (см. рисунок 6 к шагу).
Видео по теме
Обратите внимание
Скалярное произведение - это скалярная характеристика длин векторов и угла между ними.
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500