Совет 1: Как вычислить площадь пирамиды

Под площадью пирамиды обычно понимается площадь ее боковой или полной поверхности. В основании данного геометрического тела лежит многоугольник. Боковые грани имеют треугольную форму. У них есть общая вершина, которая одновременно является и вершиной пирамиды.
Вам понадобится
  • - лист бумаги;
  • - ручка;
  • - калькулятор;
  • - пирамида с заданными параметрами.
Инструкция
1
Рассмотрите данную в задании пирамиду. Определите, правильный или неправильный многоугольник лежит в ее основании. У правильного все стороны равны. Площадь в этом случае равна половине произведения периметра на радиус вписанной окружности. Найдите периметр, умножив длину стороны l на количество сторон n, то есть P=l*n. Выразить площадь основания можно формулой Sо=1/2P*r, где P - периметр, а r - радиус вписанной окружности.
2
Периметр и площадь неправильного многоугольника вычисляются иначе. Стороны имеют разную длину. Чтобы посчитать периметр, необходимо сложить все отрезки, ограничивающие основание. Для вычисления площади выполните дополнительное построение. Разделите неправильный многоугольник на фигуры, параметры которых вам известны, а площадь вы легко можете найти, используя наиболее распространенные формулы и тригонометрические функции.
3
Боковая поверхность пирамиды представляет собой сумму всех боковых граней. У правильной пирамиды высота падает в центр лежащего в основании правильного многоугольника. Для наглядности очень полезно построить высоты самой пирамиды и одной из ее боковых сторон. Точку пересечения второй высоты с нижней гранью соедините с центром основания. У вас в любом случае получится прямоугольный треугольник, в котором вам необходимо вычислить гипотенузу, одновременно являющуюся и высотой боковой грани. Сделайте это, используя известные вам параметры (например, высоту пирамиды и радиус вписанной в многоугольник основания окружности).
Постройте высоту боковой грани
4
Зная высоту боковой грани правильной пирамиды, вычислите площадь боковой поверхности. Она равна половине произведения периметра основания на высоту боковой грани, то есть вычислить ее можно по формуле Sб=1/2P*h, где P - уже известный вам периметр, а h - высота боковой грани.
5
Вычисление боковой поверхности неправильной пирамиды потребует от вас несколько больших затрат времени. Она равна сумме площадей всех боковых граней. Вспомните, чему равна площадь треугольника. Ее можно найти по формуле S=1/2l*h, то есть полупроизведению основания треугольника на его высоту.
6
Найдите площадь полной поверхности пирамиды. Для этого сложите уже известные вам площади основания и боковой поверхности.

Совет 2: Как вычислить площади граней пирамиды

Пирамида - это частный случай конуса, у которого в основании лежит многоугольник. Такая форма основания определяет наличие плоских боковых граней, каждая из которых в произвольной пирамиде может иметь разные размеры. В этом случае при вычислении площади любой боковой грани придется исходить из параметров (величин углов, длин ребер и апофемы), характеризующих именно ее треугольную форму. Расчеты значительно упрощаются, если речь идет о пирамиде правильной формы.
Инструкция
1
Из условий задачи может быть известна апофема (h) боковой грани и длина одного из составляющих ее боковых ребер (b). В треугольнике этой грани апофема является высотой, а боковое ребро - стороной, примыкающей к той вершине, из которой проведена высота. Поэтому для вычисления площади (s) разделите пополам произведение этих двух параметров: s = h*b/2.
2
Если известны длины обоих боковых ребер (b и c), образующих нужную грань, а также плоский угол между ними (γ), площадь (s) этой части боковой поверхности пирамиды тоже можно рассчитать. Для этого найдите половину произведения длин ребер друг на друга и на синус известного угла: s = ½*b*c*sin(γ).
3
Знание длин всех трех ребер (a, b, c), составляющих боковую грань, площадь (s) которой нужно рассчитать, позволит использовать формулу Герона. В этом случае удобнее ввести дополнительную переменную (p), сложив все известные длины ребер и поделив результат пополам p = (a+b+c)/2. Это полупериметр боковой грани. Для вычисления искомой площади найдите корень из его произведения на разности между ним и длиной каждого из боковых ребер: s = √(p*(p-a)*(p-b)*(p-c)).
4
В прямоугольной пирамиде вычислить площади (s) каждой из граней, прилегающих к прямому углу, можно по высоте многогранника (H) и длине общего ребра (a) этой грани с основанием. Перемножьте эти два параметра и поделите результат пополам: s = H*a/2.
5
В пирамиде правильной формы для вычисления площади (s) каждой из боковых граней достаточно знать периметр основания (P) и апофему (h) - найдите половину их произведения: s = ½*P*h.
6
При известном числе вершин (n) в многоугольнике основания, площадь боковой грани (s) правильной пирамиды можно рассчитать по длине бокового ребра (b) и величине угла (α), образуемого двумя смежными боковыми ребрами. Для этого определите половину произведения числа вершин многоугольника основания на возведенную в квадрат длину бокового ребра и синус известного угла: s = ½*n*b²*sin(α).
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500