Совет 1: Как нарисовать фигуру, не отрывая руки

Математик Леонард Эйлер однажды задумался над вопросом, можно ли перейти через все мосты в том городе, где он тогда жил, так, чтобы ни через один мост не проходить дважды? Этот вопрос положил начало новой увлекательной задаче: если дана геометрическая фигура, как начертить ее на бумаге одним росчерком пера, не проводя дважды ни одну линию?
Инструкция
1
Фигура, которую можно начертить одной линией, не отрывая руку от бумаги, называется уникурсальной. Далеко не все геометрические фигуры обладают этим свойством.
2
Предполагается, что заданная фигура состоит из точек, соединенных прямыми или искривленными отрезками. Следовательно, в каждой такой точке сходится определенное число отрезков. Такие фигуры в математике принято называть графами.
3
Если в точке сходится четное число отрезков, то и саму такую точку называют четной вершиной. Если число отрезков нечетное, то вершина называется нечетной. Например, квадрат, в котором проведены обе диагонали, обладает четырьмя нечетными вершинами и одной четной — в точке пересечения диагоналей.
4
У отрезка по определению два конца, и следовательно, он всегда соединяет две вершины. Поэтому, просуммировав все входящие отрезки для всех вершин графа, можно получить только четное число. Следовательно, каков бы ни был граф, нечетных вершин в нем всегда будет четное количество (в том числе ноль).
5
Граф, в котором вовсе нет нечетных вершин, всегда можно начертить, не отрывая руки от бумаги. При этом все равно, с какой вершины начинать.

Если нечетных вершин всего две, то такой граф тоже уникурсален. Путь обязательно должен начинаться в одной из нечетных вершин, а закончиться — в другой из них.

Фигура, в которой нечетных вершин четыре или больше, не уникурсальна, и без повторений линий начертить ее не удастся. Например, тот же квадрат с проведенными диагоналями не уникурсален, так как у него четыре нечетных вершины. Но квадрат с одной диагональю или «конверт» — квадрат с диагоналями и «крышечкой» — можно начертить одной линией.
6
Чтобы решить задачу, нужно представить, что каждая проведенная линия исчезает из фигуры — второй раз по ней пройти нельзя. Следовательно, изображая уникурсальную фигуру, нужно следить, чтобы оставшаяся часть работы не распадалась на не связанные между собой части. Если такое случится, довести дело до конца уже не получится.

Совет 2: Как нарисовать квадрат, не отрывая руки

Квадрат – это равносторонний и прямоугольный четырехугольник. Его нарисовать очень просто. Начните тренировку сначала на тетради в клетку. С помощью простого карандаша и невидимого квадрата из точек научитесь рисовать квадрат не отрывая руку от бумаги.
Вам понадобится
  • - простой карандаш;
  • - листок в клетку;
  • - лист А4;
  • - линейка.
Инструкция
1
Берем для начала тетрадь в клетку, в ней удобно чертить квадрат. Отступив от левого края и сверху приблизительно по 3 см, поставьте точку. От нее, вправо, отсчитайте 5 клеток, поставьте еще одну точку.
Затем от этих точек вниз по линии отчитываем еще по 5 клеток поставим еще 2 точки. Получился невидимый квадрат. И с помощью карандаша аккуратно соединяйте 1,2,3 и 4 точки. Квадрат размером 2,5 на 2,5 см готов.
2
Можно такой квадрат нарисовать на обычной бумаге, формата А4, со стороной 3 см. Расположите лист вертикально. Отступите от верхнего края бумаги 10 см. Воспользуйтесь линейкой для того, чтобы поставить точки по прямой. Приложите линейку к левому краю так, чтобы края линейки и бумаги совпадали, это нужно для правильного изображения квадрата. Отмерьте от края примерно 5 см (для поля) поставьте первую точку. Далее влево, через 3 см еще одну точку - вторую. Затем линейку поворачивайте на 90 градусов. Начало линейки будет совпадать с верхним краем бумаги, и от первой точки вниз отмерьте 3см, ставьте третью точку. Передвиньте линейку ко второй точки и от нее вниз, на расстоянии 3 см ставим четвертую точку. Теперь аккуратно ровными линиями соедините все точки, не отрывая карандаш от рисунка.
3
Можно попробовать так: без использования линейки и точек. Изобразите квадрат посредине листа. Сначала не старайтесь нарисовать его четырьмя идеальными линиями. Чертите стороны квадрата «навылет», наводя дополнительные линии, пока квадрат не получится квадратом. При этом не отрывайте руку от бумаги. Проводите линии параллельно краям бумаги. Сделайте несколько таких тренировочных упражнений. Этот метод научит вас рисовать ровные линии и квадрат не отрывая руки.
Источники:
  • рисунок квадратами

Совет 3: Как нарисовать мост

В нарисованных городских или сельских пейзажах нередко фигурируют различные мосты. Эта особенная постройка может выглядеть изящной и невесомой, а может, наоборот, создавать впечатление строгого и тяжелого сооружения.
Вам понадобится
  • карандаш, бумага, краски
Инструкция
1
Начните рисование простого сельского моста с проведения двух параллельных линий. Соедините линии пятью черточками. Эти черточки обозначат доски, из которых сделан мост. Доски раскрасьте светло-коричневым цветом. Нарисуйте на каждой доске неровные трещины. Начертите еще одну линию. Она должна быть параллельна нижнему краю мостика. Это сделает доски более объемными. Добавьте дальнему краю моста пять колышков. Соедините их провисающей веревкой коричнево цвета. Нарисуйте два колышка на ближнем крае моста.
2
Если вы собираетесь нарисовать подвесной мост, для начала изобразите то место, к которому он будет прикреплен. Предположим, это будут отвесные скалы. Соедините края скал двумя близко расположенными линиями. Они не должны быть прямыми. Нарисуйте их немного выгнутыми в сторону земли. Соедините линии между собой многочисленными перпендикулярными черточками. Закрасьте пространство между черточками коричневым цветом. Дощатое основание моста готово. Оснастите его перилами. Нарисуйте две дополнительные параллельные линии. Они должны располагаться немного выше основания моста. Затем проведите от этих линий редкие перпендикуляры вниз к мосту.
3
Если вы рисуете красивый средневековый мост, на середине листа проведите три параллельные линии. Они должны располагаться достаточно близко друг к другу. Пространство между верхней и средней линией заполните светло-серым цветом. Промежуток между средней и нижней линией закрасьте темно-серой краской. На тех местах, где мост соединяется с землей, нарисуйте два высоких темно-зеленых прямоугольника. Заполните их светло-серыми кружочками, которые будут исполнять роль булыжников. Прямоугольники – это башни. В каждой башне нарисуйте по одному квадратному окошку. Над башнями начертите треугольные крыши, расположенные острием вверх. Обе крыши покройте черепицей. Для этого рисуйте чешуйки красного цвета. Затем соедините верхние края обоих башен линией. Линия должна провисать над мостом. От этой линии опустите перпендикуляры до поверхности моста.
Источники:
  • Мосты мира

Совет 4: Какие фигуры называются равными

Одним из основных понятий в геометрии является фигура. Под этим термином подразумевается множество точек на плоскости, ограниченное конечным числом линий. Некоторые фигуры могут рассматриваться как равные, что тесно связано с понятием движения.
Геометрические фигуры могут рассматриваться не изолированно, а в том или ином соотношении друг с другом – их взаимное расположение, соприкосновение и прилегание, положение «между», «внутри», соотношение, выраженное в понятиях «больше», «меньше», «равно».

Геометрия изучает инвариантные свойства фигур, т.е. те, которые остаются неизменными при тех или иных геометрических преобразованиях. Такое преобразование пространства, при котором остается неизменным расстояние между точками, составляющими ту или иную фигуру, называется движением.

Движение может выступать в разных вариантах: параллельный перенос, тождественное преобразование, поворот вокруг оси, симметрия относительно прямой или плоскости, центральная, поворотная, переносная симметрия.

Движение и равные фигуры



Если возможно такое движение, которое приведет к совмещению одной фигуры с другой, такие фигуры называют равными (конгруэнтными). Две фигуры, равные третьей, равны и между собою – такое утверждение было сформулировано еще Евклидом, основоположником геометрии.

Понятие конгруэнтных фигур может быть объяснено и более простым языком: равными называются такие фигуры, которые полностью совпадут при наложении их друг на друга.

Это достаточно легко определить, если фигуры даны в виде неких предметов, которыми можно манипулировать – например, вырезаны из бумаги, поэтому в школе на уроках нередко прибегают к такому способу объяснения данного понятия. Но две фигуры, начерченные на плоскости, нельзя физически наложить друг на друга. В данном случае доказательством равенства фигур выступает доказательство равенства всех элементов, составляющих эти фигуры: длина отрезков, размер углов, диаметр и радиус, если речь идет об окружности.

Равновеликие и равносоставленные фигуры



С равными фигурами не следует смешивать равновеликие и равносоставленные фигуры – при всей близости данных понятий.
Равновеликими называются такие фигуры, которые имеют равную площадь, если это фигуры на плоскости, или равный объем, если речь идет о трехмерны телах. Совпадение всех элементов, составляющих данные фигуры, не является обязательным. Равные фигуры будут равновеликими всегда, но не всякие равновеликие фигуры можно назвать равными.

Понятие равносоставленности чаще всего применяют к многоугольникам. Оно подразумевает, что многоугольники можно разбить на одинаковое количество соответственно равных фигур. Равносоставленные многоугольники всегда являются равновеликими.
Источники:
  • Что такое равные фигуры
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500
к
Honor 6X Premium
новая премиальная версия
узнать больше