Совет 1: Как для графика составить уравнение

Глядя на график прямой, можно без особых сложностей составить ее уравнение. При этом вам могут быть известны две точки, либо нет – в таком случае начинать решение нужно с поиска двух точек, принадлежащих прямой.
Как для графика составить уравнение
Инструкция
1
Чтобы найти координаты точки, принадлежащей прямой, выберите ее на линии и опустите перпендикулярные линии на оси координат. Определите, какому числу соответствует точка пересечения, пересечение с осью ох – это значение абсциссы, то есть х1, пересечение с осью оу - это ордината, у1.
2
Постарайтесь выбрать точку, координаты которой можно определить без дробных значений, для удобства и точности расчетов. Для построения уравнения вам нужно как минимум две точки. Найдите координаты еще одной точки, принадлежащей данной прямой (х2, у2).
3
Подставьте значения координат в уравнение прямой, имеющей общий вид у=kx+b. У вас получится система из двух уравнений у1=kx1+b и y2=kx2+b. Решите эту систему, например, следующим способом.
4
Выразите b из первого уравнения и подставьте во второе, найдите k, подставьте в любое уравнение и найдите b. Например, решение системы 1=2k+b и 3=5k+b будет выглядеть так: b=1-2k, 3=5k+(1-2k); 3k=2, k=1.5, b=1-2*1,5=-2. Таким образом, уравнение прямой имеет вид y=1,5х-2.
5
Зная две точки, принадлежащие прямой, попробуйте воспользоваться каноническим уравнением прямой, оно выглядит таким образом: (х - х1)/(х2 - х1)=(у - у1)/(у2 - у1). Подставьте значения (х1;у1) и (х2;у2), упростите. Например, точки (2;3) и (-1;5) принадлежат прямой (х-2)/(-1-2)=(у-3)/(5-3); -3(х-2)=2(у-3); -3х+6=2у-6; 2у=12-3х или у=6-1,5х.
6
Чтобы найти уравнение функции, имеющей нелинейный график, действуйте так. Просмотрите все стандартные графики y=x^2, y=x^3, y=√x, y=sinx, y=cosx, y=tgx и т.д. Если один из них напоминает вам ваш график, возьмите его за основу.
7
Начертите на той же оси координат стандартный график функции-основы и найдите его отличия от своего графика. Если график перенесен на несколько единиц вверх или вниз – значит к функции добавлено это число (например, у=sinx+4). Если график перенесен вправо или влево, значит, число добавлено к аргументу (например, у=sin (х+П/2).
8
Вытянутый график в высоту график говорит о том, что функция аргумента умножена на какое-то число (например, у=2sinx). Если график, напротив, уменьшен в высоту, значит, число перед функцией меньше 1.
9
Сравните график функции-основы и вашей функции по ширине. Если он более узкий, значит перед х стоит число больше 1, широкий – число меньше 1 (например, у=sin0.5х).
10
Подставляя в получившееся уравнение функции разные значения х, проверяйте, правильно ли находится значение функции. Если все верно - вы подбрали уравнение функции по графику.
Обратите внимание
Возможно, график соответствует найденному уравнению лишь на определенном отрезке. В таком случае укажите, для каких значений х выполняется полученное равенство.

Совет 2: Как найти уравнение перпендикулярной прямой

В декартовой системе координат всякая прямая может быть записана в виде линейного уравнения. Различают общий, канонический и параметрический способы задания прямой, каждый из которых предполагает свои условия перпендикулярности.
Как найти уравнение перпендикулярной прямой
Инструкция
1
Пусть две прямые в пространстве заданы каноническими уравнениями:(x-x1)/q1 = (y-y1)/w1 = (z-z1)/e1;(x-x2)/q2 = (y-y2)/w2 = (z-z2)/e2.
2
Числа q, w и e, представленные в знаменателях, являются координатами направляющих векторов к этим прямым. Направляющим называют такой ненулевой вектор, который лежит на данной прямой либо параллелен ей.
3
Косинус угла между прямыми имеет формулу:cosλ = ± (q1·q2 + w1·w2 + e1·e2) / √ [(q1)² + (w1)² + (e1)²] · [(q2)² + (w2)² + (e2)²].
4
Прямые, заданные каноническими уравнениями, взаимно перпендикулярны тогда и только тогда, когда их направляющие векторы ортогональны. То есть, угол между прямыми (он же – угол между направляющими векторами) равен 90°. Косинус угла в этом случае обращается в ноль. Поскольку косинус выражен дробью, то его равенство нулю эквивалентно нулевому знаменателю. В координатах это запишется так:q1·q2 + w1·w2 + e1·e2 = 0.
5
Для прямых на плоскости цепочка рассуждений выглядит аналогично, но условие перпендикулярности запишется чуть более упрощенно: q1·q2 + w1·w2 = 0, т.к. третья координата отсутствует.
6
Пусть теперь прямые заданы общими уравнениями:J1 · x + K1 · y + L1 · z = 0;J2 · x + K2 · y + L2 · z = 0.
7
Здесь коэффициенты J, K, L – это координаты нормальных векторов. Нормаль – это единичный вектор, перпендикулярный к прямой.
8
Косинус угла между прямыми теперь запишется в таком виде:cosλ = (J1·J2 + K1·K2 + L1·L2) / √ [(J1)² + (K1)² + (L1)²] · [(J2)² + (K2)² + (L2)²].
9
Прямые взаимно перпендикулярны в том случае, если нормальные векторы ортогональны. В векторном виде, соответственно, это условие выглядит так:J1·J2 + K1·K2 + L1·L2 = 0.
10
Прямые на плоскости, заданные общими уравнениями, перпендикулярны, когда J1·J2 + K1·K2 = 0.
Полезный совет
Имея уравнение некоторой прямой, найдите уравнение прямой, которая ей перпендикулярна, используя изложенные выше свойства.
Источники:
  • «Элементы линейной алгебры и аналитической геометрии», Р.Ф. Апатенок, А.М. Маркина, Н.В. Попова, В.Б. Хейнман, 1986.
  • «Курс аналитической геометрии и линейной алгебры», Д.В. Беклемишев, 2001.
Совет полезен?
Поиск
Добавить комментарий к статье
Осталось символов: 500