Совет 1: Как найти градиент

При рассмотрении вопросов, включающих понятие градиента, чаще всего функции воспринимают как скалярные поля. Поэтому необходимо ввести соответствующие обозначения.
Вам понадобится
  • - буман;
  • - ручка.
Инструкция
1
Пусть функция задается тремя аргументами u=f(x, y, z). Частную производную функции, на пример по х, определяют как производную по этому аргументу, полученную при фиксировании остальных аргументов. Для остальных аргументов аналогично. Обозначения частной производной записывается в виде: дf/дх = u’x …
2
Полный дифференциал будет равен du=(дf/дх)dx+ (дf/дy)dy+(дf/дz)dz.

Частные производные можно понимать, как производные по направлениям координатных осей. Поэтому возникает вопрос о нахождении производной по направлению заданного вектора s в точке M(x, y, z) (не забывайте, что направление s задает единичный вектор-орт s^o). При этом вектор-дифференциал аргументов {dx, dy, dz}={дscos(альфа), дsсоs(бета), дsсоs(гамма)}.
3
Учитывая вид полного дифференциала du, можно сделать вывод, что производная по направле-нию s в точке М равна:

(дu/дs)|M=((дf/дх)|M)соs(альфа)+ ((дf/дy)|M) соs(бета) +((дf/дz)|M) соs(гамма).
Если s= s(sx,sy,sz), то направляющие косинусы {соs(альфа), соs(бета), соs(гамма)} вычисляются (см. рис.1а).
Как найти градиент
4
Определение производной по направлению, считая точку М переменной, можно переписать в виде скалярного произведения:
(дu/дs)=({дf/дх, дf/дy,дf/дz}, {соs(альфа), соs(бета), соs(гамма)})=(grad u, s^o).

Данное выражение будет справедливо для скалярного поля. Если рассматривается просто функ-ция, то gradf – это вектор, имеющий координаты, совпадающие с частными производными f(x, y, z).

gradf(x,y,z)={{дf/дх, дf/дy, дf/дz}=)=(дf/дх)i+(дf/дy)j +(дf/дz)k.

Здесь (i, j, k) – орты координатных осей в прямоугольной декартовой системе координат.
5
Если использовать дифференциальный вектор-оператор Гамильтона набла, то gradf можно записать, как умножение этого вектора-оператора на скаляр f (см. рис. 1б).

С точки зрения связи gradf c производной по направлению, равенство (gradf, s^o)=0 возможно, если эти векторы ортогональны. Поэтому gradf часто определяют, как направление быстрейшего изменения скалярного поля. А с точки зрения дифференциальных операций (gradf - одна из них), свойства gradf в точности повторяют свойства дифференцирования функций. В частности, если f=uv, то gradf=(vgradu+u gradv).

Совет 2: Как найти градиент функции

Градиент функции – векторная величина, нахождение которой связано с определением частных производных функции. Направление градиента указывает путь наискорейшего роста функции от одной точки скалярного поля к другой.
Инструкция
1
Для решения задачи на градиент функции используются методы дифференциального исчисления, а именно нахождение частных производных первого порядка по трем переменным. При этом предполагается, что сама функция и все ее частные производные обладают свойством непрерывности в области определения функции.
2
Градиент – это вектор, направление которого указывает направление максимально быстрого возрастания функции F. Для этого на графике выбираются две точки M0 и M1, которые являются концами вектора. Величина градиента равна скорости возрастания функции от точки M0 к точке M1.
3
Функция дифференцируема во всех точках этого вектора, следовательно, проекциями вектора на координатных осях являются все ее частные производные. Тогда формула градиента выглядит следующим образом:grad = (∂F/∂х)•i + (∂F/∂y)•j + (∂F/∂z)•k, где i, j, k – координаты единичного вектора. Иными словами, градиент функции – это вектор, координатами которого являются ее частные производные grad F = (∂F/∂х, ∂F/∂y, ∂F/∂z).
4
Пример1.Пусть задана функция F = sin(х•z²)/y. Требуется найти ее грaдиент в точке (π/6, 1/4, 1).
5
Решение.Определите частные производные по каждой переменной: F’_х = 1/y•соs(х•z²)•z²;F’_y = sin(х•z²)•(-1)•1/(y²);F’_z = 1/y•соs(х•z²)•2•х•z.
6
Подставьте известные значения координат точки:F’_x = 4•соs(π/6) = 2•√3; F’_y = sin(π/6)•(-1)•16 = -8; F’_z = 4•соs(π/6)•2•π/6 = 2•π/√3.
7
Примените формулу градиента функции:grаd F = 2•√3•i – 8•j + 2•π/√3•k.
8
Пример2.Найдите координаты градиента функции F = y•arсtg (z/x) в точке (1, 2, 1).
9
Решение.F’_х = 0•аrсtg (z/х) + y•(аrсtg(z/х))’_х = y•1/(1 + (z/х)²)•(-z/х²) = -y•z/(х²•(1 + (z/х)²)) = -1;F’_y = 1•аrсtg(z/х) = аrсtg 1 = π/4;F’_z = 0•аrсtg(z/х) + y•(аrсtg(z/х))’_z = y•1/(1 + (z/х)²)•1/х = y/(х•(1 + (z/х)²)) = 1.grаd = (-1, π/4, 1).
Видео по теме
Источники:
  • нахождение градиента
Видео по теме
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500