Наличие остроугольной петли на графике обусловливается неодинаковостью траекторий между соседними расстояниями, а также эффектом «насыщения». Гистерезис часто путают с инерционностью, однако это не одно и то же. Инерционность – это такая модель поведения, которая обозначает постоянное, однородное и монотонное сопротивление системы изменениям ее состояния.

Гистерезис в физике



В физике это свойство систем представлено тремя основными разновидностями: магнитным, сегнетоэлектрическим и упругим гистерезисом.


Магнитный гистерезис – явление, которое отражает зависимость вектора напряженности магнитного поля и вектора намагничивания в веществе. Причем как от приложенного внешнего поля, так и от предыстории конкретного образца. Существование постоянных магнитов обуславливается именно этим явлением.

Модель петли представляет собой определенный цикл, который некоторые свойства отправляет на повторную проверку и согласование, а некоторые использует дальше. Избирательный характер зависит от свойств конкретной системы.


Сегнетоэлектрический гистерезис – изменяющаяся зависимость поляризации сегнетоэлектриков от циклического изменения внешнего электрического поля.

Упругий гистерезис – поведение упругих материалов, способных сохранять и утрачивать деформацию под воздействием больших давлений. Это явление обуславливает анизотропию механических характеристик и высокие механические качества кованных изделий.

Гистерезис в электронике



В электротехнике и электронике свойством гистерезиса пользуются устройства, которые используют различные магнитные взаимодействия. Например, магнитные носители информации или триггер Шмитта.

Это свойство необходимо знать, чтобы использовать его для подавления шумов в момент переключения определенных логических сигналов (дребезга контактов, быстрых колебаний).
Упругий гистерезис бывает двух видов: динамический и статический. В первом случае график будет изображать постоянно изменяющуюся петлю, во втором – равномерную.

Во всех приборах электронного типа наблюдается тепловой гистерезис. После того как прибор был нагрет, а затем охлажден, его характеристики не принимают прежнего значения.

Это происходит из-за того, что неодинаковое тепловое расширение корпусов микросхем, кристаллодержателей, печатных плат и кристаллов полупроводников вызывает механическое напряжение, сохраняющееся и после охлаждения.

Наиболее заметно это явление в прецизионных источниках опорного напряжения, которые используются в измерительных преобразователях.