Совет 1: Как найти расстояние от точки до плоскости

Расстояние от точки до плоскости равняется длине перпендикуляра, который опущен на плоскость из этой точки. Все дальнейшие геометрические построения и измерения основаны на этом определении.
Вам понадобится
  • - линейка;
  • - чертежный треугольник с прямым углом;
  • - циркуль.
Инструкция
1
Чтобы найти расстояние от точки до плоскости:• проведите через эту точку прямую линию, перпендикулярную этой плоскости;• найдите основание перпендикуляра - точку пересечения прямой с плоскостью;• измерьте расстояние между заданной точкой и основанием перпендикуляра.
2
Для нахождения расстояния от точки до плоскости методами начертательной геометрии:• выберите на плоскости произвольную точку;• проведите через нее две прямые (лежащие в этой плоскости);• восстановите перпендикуляр к плоскости, проходящий через эту точку (постройте прямую, перпендикулярную одновременно обеим пересекающимся прямым);• проведите через заданную точку прямую параллельную, построенному перпендикуляру;• найдите расстояние между точкой пересечения этой прямой с плоскостью и заданной точкой.
3
Если положение точки задано ее трехмерными координатами, а положение плоскости – линейным уравнением, то, чтобы найти расстояние от плоскости до точки, воспользуйтесь методами аналитической геометрии:• обозначьте координаты точки через x, y, z, соответственно (х – абсцисса, y – ордината, z – аппликата);• обозначьте через А, В, С, D параметры уравнения плоскости (А – параметр при абсциссе, В – при ординате, С – при аппликате, D – свободный член);• вычислите расстояние от точки до плоскости по формуле:s = | (Ax+By+Cz+D)/√(A²+B²+C²) |,где s – оасстояние между точкой и плоскостью,|| - обозначение абсолютного значения (или модуля) числа.
4
Пример.Найдите расстояние между точкой А с координатами (2, 3, -1) и плоскостью, заданной уравнением: 7х-6у-6z+20=0.Решение.Из условий задачи следует, что:х=2,у=3,z=-1,A=7,B=-6,C=-6,D=20.Подставьте эти значения в вышеприведенную формулу.Получится:s = | (7*2+(-6)*3+(-6)*(-1)+20)/√(7²+(-6)²+(-6)²) | = | (14-18+6+20)/11 | = 2.Ответ:Расстояние от точки до плоскости равно 2 (условным единицам).

Совет 2: Как найти расстояние от точки до прямой

В школьных задачах по геометрии часто встречается задание найти расстояние от точки до прямой. Многие школьники, столкнувшись с такой задачей, впадают в ступор и не знают, что им делать, с чего начать решение задачи. Важно помнить, что расстояние от точки до прямой определяется длиной перпендикуляра.
Инструкция
1
Для того, чтобы найти расстояние от точки до прямой, вам необходим перпендикуляр от этой точки до заданной прямой.
2
Посмотрите на чертеж, который вы нарисовали по условию задачи.
3
Если требуемый перпендикуляр от точки до прямой уже присутствует на чертеже (например, в условии сказано, что это перпендикуляр, высота, задан угол в 90 градусов), найдите его длину. Вам могут быть заданы длины других сторон, величины углов, свойства фигуры. Используйте теоремы геометрии.
4
Если вы видите, что требуемый перпендикуляр присутствует, но про него не известно, что это перпендикуляр, докажите, что он является именно перпендикуляром. Затем найдите его длину.
5
Если требуемого перпендикуляра еще нет, постройте его. Будьте внимательны и аккуратны при построении, помните о свойствах перпендикуляра. Построив перпендикуляр, подумайте, как можно найти его длину. Найдите длину перпендикуляра.
Видео по теме
Обратите внимание
Не путайте высоту с медианой и биссектрисой. В общем случае эти прямые не совпадают.
Совет полезен?
В некоторых случаях построение перпендикуляра не требуется. Иногда найти высоту фигуры можно, исходя из свойств фигуры и применив формулу нахождения площади. Это в том случае, если расстоянием от точки до прямой является именно высота фигуры.
Источники:
  • как найти расстояние от точки до сторон
Поиск
ВАЖНО! Проблемы сердца сильно "помолодели". Потратьте 3 минуты на просмотр ролика. Защитите себя и близких от страшных проблем.
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500