Совет 1: Как найти боковую сторону прямоугольной трапеции

У каждой трапеции имеются две боковые стороны и два основания. Для того, чтобы узнать площадь, периметр или другие параметры этой фигуры, нужно знать хотя бы одну из боковых сторон. Также нередко по условиям задач требуется находить боковую сторону прямоугольной трапеции.
Инструкция
1
Начертите прямоугольную трапецию ABCD. Боковые стороны этой фигуры обозначьте, соответственно, как AB и DC. Первая боковая сторона DC совпадает с высотой трапеции. Она перпендикулярна двум основаниям прямоугольной трапеции.
Существует несколько способов нахождения боковых сторон. Так например, если в задаче дана вторая боковая сторона BA и угол ABH=60, то первую высоту найдите наиболее простым из способов, проведя высоту BH:
BH=AB*sinα
Поскольку BH=CD, то СD=AB*sinα=√3AB/2
2
Если, наоборот, дана сторона трапеции, обозначенная, как CD, а требуется найти ее же сторону AB, такая задача решается несколько иным образом. Так как BH=CD, и при этом, BH представляет собой катет треугольника ABH, можно сделать вывод, что сторона AB равна:
AB=BH/sinα=2BH/√3
3
Задачу можно решить и в том случае, если значения углов неизвестны, при условии, что даны два основания и боковая сторона AB. Однако, в этом случае можно найти только сторону CD, которая является высотой трапеции. Первоначально, зная значения оснований, найдите длину отрезка AH. Он равен разности большего и меньшего оснований, поскольку известно, что BH=CD:
AH=AD-BC
Затем, используя теорему Пифагора, найдите высоту BH, равную стороне CD:
BH=√AB^2-AH^2
4
Если у прямоугольной трапеции есть диагональ BD и угол 2α, как показано на рисунке 2, то сторону AB можно найти также по теореме Пифагора. Для этого, сначала вычислите длину основания AD:
AD=BD*cos2α
Затем найдите сторону AB следующим образом:
AB=√BD^2-AD^2
После этого докажите подобие треугольников ABD и BCD. Так как у этих треугольников одна общая сторона - диагональ, и при этом, два угла равны, как видно из рисунка, то эти фигуры подобны. На основании этого доказательства найдите вторую боковую сторону. Если известно верхнее основание и диагональ, то сторону найдите обычным образом с использованием стандартной теоремы косинусов:
c^2=а^2+b^2-2ab cos α, где а, b, с - стороны треугольника, α - угол между сторонами а и b.

Совет 2: Как найти стороны трапеции

Трапеция представляет собой обычный четырехугольник, обладающий добавочным свойством параллельности двух своих сторон, которые называются основаниями. Поэтому этот вопрос, во-первых, следует понимать с точки зрения отыскания боковых сторон. Во-вторых, для задания трапеции требуется не менее четырех параметров.
Инструкция
1
В данном конкретном случае самым общим ее заданием (не избыточным) следует считать условие: даны длины верхнего и нижнего оснований, а также вектор одной из диагоналей. Индексы координат (дабы написание формул не было похоже на умножение) будут выделены курсивом).Для графического изображения процесса решения постройте рисунок 1.
2
Пусть в представленной задаче рассматривается трапеция AВCD. В ней даны длины оснований ВC=b и АD=a, а также диагональ АС, заданная вектором p(px, py). Его длина (модуль) |p|=p=sqrt(((px)^2 +(py)^2). Так как вектор задается еще и углом наклона к оси (в задаче - 0X), то обозначьте его через ф (угол CAD и параллельный ему угол ACB). Далее необходимо применить известную со школьной программы теорему косинусов. При этом искомую величину (длины CD или АВ при составлении уравнения обозначьте через х).
3
Рассмотрите треугольник AСD. Здесь длина стороны АС равна модулю вектора |p|=p. AD=b. По теореме косинусов x^2=p^2+ b^2-2pbcosф. x=CD=sqrt(p^2+ b^2-2pbcosф)=CD.
4
Теперь рассмотрите треугольник ABC. Длина стороны АС равна модулю вектора |p|=p. BC=a. По теореме косинусов x^2=p^2+ a^2-2pacosф. х=AB=sqrt(p^2+ a^2-2pacosф).
5
Хотя квадратное уравнение и имеет два корня, в данном случае необходимо выбрать лишь те, где перед корнем из дискриминанта стоит знак плюс, при этом заведомо исключив отрицательные решения. Это обусловлено тем, что длина стороны трапеции должна быть заведомо положительной.
6
Итак, искомые решения в виде алгоритмов решения данной задачи получены. Чтобы представить числовое решение остается подставить данные из условия. При этом cosф вычисляется, как направляющий вектор (орт) вектора p=px/sqrt(px^2+py^2).
Обратите внимание
Конечно, возможны и другие исходные данные, например задание двух диагоналей и высоты трапеции. Но в любом случае вам потребуется информация о расстоянии между основаниями трапеции.
Источники:
  • стороны трапеции формула
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500