Совет 1: Как начертить пятиугольник при помощи циркуля

Задача построения правильного пятиугольника сводится к задаче деления окружности на пять равных частей. Поскольку правильный пятиугольник - это одна из фигур, содержащая в себе пропорции золотого сечения, его построением издавна интересовались живописцы и математики. Теперь найдены несколько способов построения правильного многоугольника, вписанного в заданную окружность.
Вам понадобится
  • - линейка
  • - циркуль
Инструкция
1
Очевидно, что если построить правильный десятиугольник, а затем соединить его вершины через одну, то получим пятиугольник. Для построения десятиугольника начертите окружность заданного радиуса. Обозначьте ее центр буквой O. Проведите два перпендикулярных друг друга радиуса, на рисунке они обозначены как OA1 и OB. Радиус OB разделите пополам с помощью линейки или методом деления отрезка пополам с помощью циркуля. Постройте маленькую окружность с центром C в середине отрезка OB радиусом, равным половине OB.
Соедините точку C с точкой A1 на исходной окружности по линейке. Отрезок CA1 пересекает вспомогательную окружность в точке D. Отрезок DA1 равен стороне правильного десятиугольника, вписанного в данную окружность. Циркулем отметьте этот отрезок на окружности, затем соедините точки пересечения через одну и вы получите правильный пятиугольник.
2
Еще один способ нашел немецкий художник Альбрехт Дюрер. Чтобы построить пятиугольник по его способу, начните снова с построения окружности. Снова отметьте ее центр O и проведите два перпендикулярных радиуса OA и OB. Радиус OA разделите пополам и середину отметьте буквой C. Установите иглу циркуля в точку C и раскройте его до точки B. Проведите окружность радиуса BC до пересечения с диаметром исходной окружности, на котором лежит радиус OA. Точку пересечения обозначьте D. Отрезок BD - сторона правильного пятиугольника. Отложите этот отрезок пять раз на исходной окружности и соедините точки пересечения.
3
Если же требуется построить пятиугольник по его заданной стороне, то вам нужен третий способ. Начертите по линейке сторону пятиугольника, обозначьте этот отрезок буквами A и B. Разделите его на 6 равных частей. Из середины отрезка AB проведите луч, перпендикулярный отрезку. Постройте две окружности радиусом AB и центрами в A и B, как если бы вы собирались делить отрезок пополам. Эти окружности пересекаются в точке С. Точка C при этом лежит на луче, исходящем перпендикулярно вверх из середины AB. Отложите от C вверх по этому лучу расстояние, равное 4/6 от длины AB, обозначьте эту точку D. Постройте окружность радиуса AB с центром в точке D. Пересечение этой окружности с двумя вспомогательными построенными ранее даст последние две вершины пятиугольника.

Совет 2: Как начертить пятиугольник

Тема деления окружности на равные части с целью построения правильных вписанных многоугольников издавна занимала умы древних ученых. Эти принципы построения с применением циркуля и линейки были изложены еще в эвклидовых «Началах». Однако лишь спустя два тысячелетия эта задача была полностью решена не только графически, но и математически.
Инструкция
1
Приближенное построение правильного пятиугольника способом А. Дюрера, с помощью циркуля и линейки (через две окружности с общим радиусом, равным стороне пятиугольника).
2
Построение правильного пятиугольника на основе правильного десятиугольника, вписанного в окружность (соединив вершины десятиугольника через одну).
3
Графическое построение через вычисленный внутренний угол пятиугольника с помощью транспортира и линейки (сумма углов выпуклого n-угольника равна Sn=180°(n - 2), т.к. у правильного многоугольника все углы равны). При n=5, S5=5400, тогда величина угла 1080.

А так же с помощью окружности и двух лучей, выходящих из ее центра, при условии, что угол между ними равен 720, т.к. (36005=720). Их пересечение с окружностью даст отрезок, равный стороне пятиугольника.
4
Еще один простой графический способ: поделить диаметр заданной окружности AB на три части (AC=CD=DE). Из точки D опустить перпендикуляр до пересечения с окружность в точках E, F.

Проведя прямые через отрезки EC и FC до пересечения с окружностью, получим точки G, H.

Точки G,E,B,F,H – вершины правильного пятиугольника.
5
Построение с помощью приема Биона (позволяющего построить правильный вписанный в окружность многоугольник с любым числом сторон n по заданному соотношению).

Например: для n=5. Построим правильный треугольник ABC, где AB – диаметр заданной окружности. Найдем на AB точку D, по следующему соотношению: AD : AB = 2 : n. При n=5, AD=25*AB. Проведем прямую через CD до пересечения с окружностью в точке E. Отрезок AE – сторона правильного вписанного пятиугольника.

При n=5,7,9,10 погрешность построения не превышает 1%. С возрастанием n, погрешность приближения растёт, но остаётся меньше 10,3%.
6
Построение по заданной стороне по методу Л. Да Винчи (используя соотношение между стороной многоугольника (аn) и апофемой (ha): аn/2 : ha =3/(n-1), которое можно выразить так: tg180°/n =3/(n-1)).
7
Общий способ построения правильных многоугольников по заданной стороне по методу Ф. Коваржика (1888 г.), на основе принципа Л. да Винчи.

Единый способ построения правильного n-угольника на основании теоремы Фалеса.

Можно добавить только, что приближенные методы построения многоугольников оригинальны, просты и красивы.

Совет 3: Как чертить пятиугольник

Существуют два основных способа построения правильного многоугольника с пятью сторонами. Оба они предполагают использование циркуля, линейки и карандаша. Первый способ представляет собой вписывание пятиугольника в окружность, а второй способ основывается на заданной длине стороны вашей будущей геометрической фигуры.
Вам понадобится
  • Циркуль, линейка, карандаш
Инструкция
1
Первый способ построения пятиугольника считается более «классическим». Для начала постройте окружность и как-либо обозначьте ее центр (традиционно для этого используется буква О). Затем проведите диаметр этой окружности (назовем его АВ) и разделите один из двух полученных радиусов (например, ОА) ровно пополам. Середину этого радиуса обозначим буквой С.
2
Из точки О (центра исходной окружности) проведите еще один радиус (ОD), который будет строго перпендикулярен проведенному ранее диаметру (АВ). Затем возьмите циркуль, поставьте его в точку С и отмерьте расстояние до пересечения нового радиуса с окружностью (СD). Это же расстояние отложите на диаметре АВ. Вы получите новую точку (назовем ее Е). Отмерьте циркулем расстояние от точки D до точки Е – оно будет равно длине стороны вашего будущего пятиугольника.
3
Поставьте циркуль в точку D и отложите на окружности расстояние, равное отрезку DЕ. Повторите эту процедуру еще 3 раза, а затем соедините точку D и 4 новые точки на исходной окружности. Получившаяся в результате построения фигура будет правильным пятиугольником.
4
Чтобы построить пятиугольник другим способом, для начала начертите отрезок. Например, это будет отрезок АВ длиной 9 см. Далее разделите ваш отрезок на 6 равных частей. В нашем случае длина каждой части будет составлять 1,5 см. Теперь возьмите циркуль, поставьте его в один из концов отрезка и проведите окружность или дугу с радиусом, равным длине отрезка (АВ). Затем переставьте циркуль в другой конец и повторите операцию. Полученные окружности (или дуги) пересекутся в одной точке. Назовем ее C.
5
Теперь возьмите линейку и проведите прямую через точку С и центр отрезка AB. Затем начиная от точки С отложите на этой прямой отрезок, составляющий 4/6 отрезка AB. Второй конец отрезка обозначим буквой D. Точка D будет являться одной из вершин будущего пятиугольника. Из этой точки проведите окружность или дугу с радиусом, равным АВ. Эта окружность (дуга) пересечет ранее построенные вами окружности (дуги) в точках, являющихся двумя недостающими вершинами пятиугольника. Соедините эти точки с вершинами D, А и В, и построение правильного пятиугольника будет завершено.
Видео по теме

Совет 4: Как начертить луч

Луч — это прямая линия, проведенная из точки и не имеющая конца. Существуют и другие определения луча: например, «...это прямая, ограниченная точкой с одной стороны». Как правильно начертить луч и какие принадлежности для черчения вам понадобятся?
Вам понадобится
  • Лист бумаги, карандаш и линейка.
Инструкция
1
Возьмите листок бумаги и отметьте в произвольном месте точку. Затем приложите линейку и проведите линию, начиная с указанной точки и до бесконечности. Эта нарисованная линия и называется лучом. Теперь отметьте на луче еще одну точку, к примеру, буквой C. Линия от начальной и до точки C будет называться отрезком. Если вы просто начертите линию и не отметите хотя бы одну точку, то эта прямая не будет являться лучом.
2
Нарисовать луч в любом графическом редакторе или в том же MSOffice не сложнее, чем вручную. Для примера возьмите программу Microsoft Office 2010. Зайдите в раздел «Вставка» и выберите элемент «Фигуры». В выпадающем списке выберите фигуру «Линия». Далее курсор примет вид крестика. Чтобы начертить ровную линию, нажмите клавишу «Shift»и проведите линию нужной длины. Сразу после начертания откроется вкладка «Формат». Сейчас у вас нарисована просто прямая линия и отсутствует фиксированная точка, а исходя из определения, луч должен быть ограничен точкой с одной стороны.
3
Чтобы сделать точку в начале линии, сделайте следующее: выделите нарисованную линию и вызовите контекстное меню, нажав правую кнопку мыши.
4
Выберите пункт «Формат фигуры». В меню слева выберите пункт «Тип линии». Далее найдите заголовок «Параметры линий» и выберите «Тип начала» в виде кружочка. Там же вы можете настроить толщину линий начала и конца.
5
Уберите выделение с линии и увидите, что в начале линии появилась точка. Для создания надписи нажмите кнопку «Нарисовать надпись» и создайте поле, где будет находиться надпись. После написания надписи кликните на свободное место и она активируется.
6
Луч успешно нарисован и заняло это всего несколько минут. Рисование луча в других редакторах осуществляется по такому же принципу. При нажатой клавише «Shift» всегда будут рисоваться пропорциональные фигуры. Приятного пользования.
Видео по теме
Обратите внимание
Отношение диагонали правильного пятиугольника к его стороне составляет золотое сечение (иррациональное число (1+√5)/2).

Каждый из пяти внутренних углов пятиугольника равен 108°.
Полезный совет
Если соединить вершины правильного пятиугольника диагоналями, то получится пентаграмма.
Источники:
  • Построение правильных многоугольников с помощью циркуля и линейки
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500