Совет 1: Как найти длину окружности, зная ее радиус

Окружность представляет собой замкнутую кривую на плоскости, у которой все точки в равной степени удалены от единого центра окружности. Под радиусом окружности понимается отрезок, который объединяет между собой центр окружности с любой точкой данной замкнутой кривой. Зная лишь один радиус окружности, можно с легкостью найти ее длину.
Вам понадобится
  • Величина радиуса окружности, диаметра, значение константы π.
Инструкция
1
Сначала надо проанализировать исходные данные к задаче. Дело в том, что ее условии не может быть явно сказано, какова длина радиуса окружности. Вместо этого в задаче может быть дана длина диаметра окружности. Диаметр окружности - отрезок, который объединяет между собой две противоположные точки окружности, проходя через ее центр. Проанализировав определения окружности и диаметра, можно сказать, что длина диаметра равна удвоенной длине радиуса.
2
Теперь можно принять радиус окружности равным R. Тогда для нахождения длины окружности необходимо воспользоваться формулой:
L = 2πR = πD, где L - длина окружности, D - диаметр окружности, который всегда в 2 раза больше радиуса.
3
Можно рассмотреть пример применения данной формулы: дана окружность с диаметром 8 см. Требуется найти длину окружности.
Решение: L = 2*3,14*4 = 3,14*8 = 25,12 см
Ответ: длина окружности с диаметром 8 см равна 25,12 см

Совет 2: Как найти диаметр окружности от ее длины

Окружность — замкнутая кривая линия, все точки которой находятся на равном расстоянии от одной точки. Эта точка - центр окружности, а отрезок между точкой на кривой и ее центром называется радиусом окружности.
Инструкция
1
Если через центр окружности провести прямую линию, то ее отрезок между двумя точками пересечения этой прямой с окружностью называется диаметром данной окружности. Половина диаметра, от центра до точки пересечения диаметра с окружность — это радиус
окружности. Если окружность разрезать в произвольной точке, выпрямить и измерить, то полученная величина является длиной данной окружности.
2
Начертите несколько окружностей разным раствором циркуля. Визуальное сравнение позволяет сделать вывод, что больший диаметр очерчивает больший круг, ограниченный окружностью с большей длиной. Следовательно, между диаметром окружности и ее длиной существует прямо пропорциональная зависимость.
3
По физическому смыслу параметр «длина окружности» соответствует периметру многоугольника, ограниченного ломаной линией. Если вписать в окружность правильный n-угольник со стороной b, то периметр такой фигуры Р равен произведению стороны b на число сторон n: Р=b*n. Сторона b может быть определена по формуле: b=2R*Sin (π/n), где R — радиус окружности, в которую вписали n-угольник.
4
При увеличении числа сторон периметр вписанного многоугольника будет все больше приближаться к длине окружности L. Р= b*n=2n*R*Sin (π/n)=n*D*Sin (π/n). Зависимость между длиной окружности L и ее диаметром D постоянна. Отношение L/D=n*Sin (π/n) при стремлении числа сторон вписанного многоугольника к бесконечности стремится к числу π, постоянной величине, называемой «число пи» и выраженной бесконечной десятичной дробью. Для расчетов без применения вычислительной техники принимается значение π=3,14. Длина окружности и ее диаметр связаны формулой: L= πD. Для вычисления диаметра окружности разделите ее длину на число π=3,14.
Обратите внимание
Окружность можно вписать в многоугольник, либо описать вокруг него. При этом, если окружность вписана, то она в точках касания со сторонами многоугольника будет делить их пополам. Чтобы узнать радиус вписанной окружности, нужно поделить площадь многоугольника на половину его периметра:
R = S/p.
Если окружность описана вокруг треугольника, то ее радиус находится по следующей формуле:
R = a*b*c/4S, где a, b, c - это стороны данного треугольника, S - площадь треугольника, вокруг которого описана окружность.
Если требуется описать окружность вокруг четырехугольника, то это можно будет сделать при соблюдении двух условий:
Четырехугольник должен быть выпуклым.
В сумме противоположные углы четырехугольника должны составлять 180°
Полезный совет
Помимо традиционного штангенциркуля, для начертания окружности можно применять и трафареты. В современных трафаретах включены окружность разных диаметров. Данные трафареты можно приобрести в любом магазине канцтоваров.
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500