Совет 1: Как находить площадь треугольника, вписанного в окружность

Площадь треугольника можно вычислить несколькими способами в зависимости от того, какая величина известна из условия задачи. Если даны основание и высота треугольника, площадь можно найти путем вычисления произведения половины основания на высоту. При втором способе площадь вычисляется через описанную окружность около треугольника.
Инструкция
1
В задачах по планиметрии приходится находить площадь многоугольника, вписанного в круг или описанного около него. Многоугольник считается описанным около круга, если он находится снаружи, а его стороны касаются окружности. Многоугольник, находящийся внутри круга, считается вписанным в него, если его вершины лежат на окружности круга. Если в задаче дан треугольник, который вписан в окружность, все три его вершины касаются окружности. В зависимости от того, какой именно рассматривается треугольник, и выбирается способ решения задачи.
2
Наиболее простой случай возникает, когда в окружность вписан правильный треугольник. Поскольку у такого треугольника все стороны равны, радиус окружности равен половине его высоты. Поэтому, зная стороны треугольника, можно найти его площадь. Вычислить эту площадь в данном случае можно любым из способов, например:
R=abc/4S, где S - площадь треугольника, a, b, c - стороны треугольника

S=0,25(R/abc)
3
Другая ситуация возникает, когда треугольник - равнобедренный. Если основание треугольника совпадает с линией диаметра окружности или диаметр одновременно является и высотой треугольника, площадь можно вычислить по следующим образом:
S=1/2h*AC, где AC - основание треугольника
Если известен радиус окружности равнобедренного треугольника, его углы, а также основание, совпадающее с диаметром окружности, по теореме Пифагора может быть найдена неизвестная высота. Площадь треугольника, основание которого совпадает с диаметром окружности, равна:
S=R*h
В другом случае, когда высота равна диаметру окружности, описанной вокруг равнобедренного треугольника, его площадь равна:
S=R*AC
4
В ряде задач в окружность вписан прямоугольный треугольник. В таком случае, центр окружности лежит на середине гипотенузы. Зная углы и найдя основание треугольника, можно вычислить площадь любым из описанных выше способов.
В остальных случаях, особенно, когда треугольник является остроугольным или тупоугольным, применима лишь первая из указанных выше формул.

Совет 2: Как найти площадь вписанной окружности

Площадь окружности, вписанной в многоугольник, можно вычислить не только через параметры самой окружности, но через различные элементы описанной фигуры - стороны, высоту, диагонали, периметр.
Инструкция
1
Окружность называется вписанной в многоугольник, если имеет общую точку с каждой стороной описанной фигуры. Центр вписанной в многоугольник окружности всегда лежит в точке пересечения биссектрис его внутренних углов. Площадь, ограниченная окружностью, определяется формулой S=π*r²,
где r - радиус окружности,
π - число «Пи» - математическая постоянная, равная 3,14.

Для окружности, вписанной в геометрическую фигуру, радиус равен отрезку от центра до точки касания со стороной фигуры. Следовательно, можно определить зависимость между радиусом вписанной в многоугольник окружности и элементами данной фигуры и выразить площадь окружности через параметры описанного многоугольника.
2
В любой треугольник возможно вписать единственную окружность с радиусом, определяемым формулой: r=s∆/p∆,
где r - радиус вписанной окружности,
s∆ - площадь треугольника,
p∆ - полупериметр треугольника.

Подставьте полученное значение радиуса, выраженное через элементы описанного около окружности треугольника, в формулу площади окружности. Тогда площадь S окружности, вписанной в треугольник с площадью s∆ и полупериметром p∆ вычисляется по формуле:
S = π*(s∆/p∆)².
3
Окружность можно вписать в выпуклый четырехугольник при условии, что в нем равны суммы противолежащих сторон.
Площадь S окружности, вписанной в квадрат со стороной a, равна: S= π*a²/4.
4
В ромбе площадь S вписанной окружности равна: S= π*(d₁d₂/4a)². В этой формуле d₁ и d₂ — диагонали ромба, а - сторона ромба.
Для трапеции площадь S вписанной в нее окружности определяется по формуле: S= π*(h/2)², где h - высота трапеции.
5
Сторона а правильного шестиугольника равна радиусу вписанной в него окружности, площадь S окружности вычисляется по формуле: S = π*a².

Окружность можно вписать в правильный многоугольник с любым количеством сторон. Общая формула для определения радиуса r окружности, вписанной в многоугольник со стороной а и числом сторон n: r=a/2tg(360°/2n). Площадь S вписанной в такой многоугольник окружности: S=π*(a/2tg(360°/2n)²/2.
Видео по теме
Поиск
ВАЖНО! Проблемы сердца сильно "помолодели". Потратьте 3 минуты на просмотр ролика. Защитите себя и близких от страшных проблем.
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500