Совет 1: Как найти площадь равнобедренной трапеции

Равнобедренная трапеция - это трапеция, у которой противолежащие непараллельные стороны равны. Ряд формул позволяют найти площадь трапеции через ее стороны, углы, высоту и.т.д. Для случая равнобедренных трапеций эти формулы могут несколько упрощаться.
Равнобедренная трапеция
Вам понадобится
  • Формулы для площади обычной трапеции
Инструкция
1
Самая распространенная формула для вычисления площади трапеции - S = (a+b)h/2. Для случая равнобедренной трапеции она явным образом не поменяется. Можно лишь отметить, что у равнобедренной трапеции углы при любом из оснований будут равны (DAB = CDA = x). Так как ее боковые стороны тоже равны (AB = CD = с), то и высоту h можно посчитать по формуле h = с*sin(x).

Тогда S = (a+b)*с*sin(x)/2.

Аналогично, площадь трапеции можно записать через среднюю сторону трапеции: S = mh.
2
Рассмотрим частный случай равнобедренной трапеции, когда ее диагонали перпендикулярны. В этом случае, по свойству трапеции, ее высота равна полусумме оснований.

Тогда площадь трапеции можно вычислить по формуле: S = (a+b)^2/4.
3
Рассмотрим также еще одну формулу для определения площади трапеции: S = ((a+b)/2)*sqrt(c^2 - ((b-a)^2+c^2-d^2)/2(b-a))^2), где c и d - боковые стороны трапеции. Тогда в случае равнобедренной трапеции, когда c = d, формула принимает вид: S = ((a+b)/2)*sqrt(c^2-((b-a)^2/2(b-a))^2).

Совет 2: Как узнать площадь трапеции

Четырехугольник, у которого пара противолежащих сторон параллельна, называют трапецией. В трапеции определяют основания, стороны, диагонали, высоту, среднюю линию. Зная различные элементы трапеции, можно найти ее площадь.
Как узнать площадь трапеции
Инструкция
1
Найдите площадь трапеции по формуле S=0,5×(a+b)×h, если известны a и b — длины оснований трапеции, то есть параллельные стороны четырехугольника, и h — высота трапеции (наименьшее расстояние между основаниями). Например, пусть дана трапеция с основаниями a=3 см, b=4 см и высотой h=7 см. Тогда ее площадь будет равна S=0,5×(3+4)×7=24,5 см².
2
Воспользуйтесь следующей формулой для вычисления площади трапеции: S=0,5×AC×BD×sin(β), где AC и BD — диагонали трапеции, а β — угол между этими диагоналями. Например, задана трапеция с диагоналями AC=4 см и BD=6 см и углом β=52°, тогда sin(52°)≈0,79. Подставьте значения в формулу S=0,5×4×6×0,79≈9,5 см².
3
Посчитайте площадь трапеции, когда известны ее m — средняя линия (отрезок, соединяющий середины сторон трапеции) и h — высота. В этом случае площадь будет равна S=m×h. К примеру, пусть у трапеции средняя линия m=10 см, а высота h=4 см. В этом случае получается, что площадь заданной трапеции равна S=10×4=40 см².
4
Вычислите площадь трапеции, в случае когда даны длины ее боковых сторон и оснований по формуле: S=0,5×(a+b)×√(c²−(((b−a)²+c²−d²)÷(2×(b−a)))²), где a и b — основания трапеции, а c и d — ее боковые стороны. Например, пусть дана трапеция с основаниями 40 см и 14 см и боковыми сторонами 17 см и 25 см. По вышеуказанной формуле S=0,5×(40+14)×√(17²−(((14−40)²+17²−25²)÷(2×(14−40)))²)≈423,7 см².
5
Рассчитайте площадь равнобедренной (равнобокой) трапеции, то есть трапеции у которой боковые стороны равны, если в нее вписана окружность по формуле: S=(4×r²)÷sin(α), где r — радиус вписанной окружности, α — угол при основании трапеции. В равнобедренной трапеции углы при основании равны. Например, пусть в трапецию вписана окружность радиусом r=3 см, а угол при основании α=30°, тогда sin(30°)=0,5. Подставьте значения в формулу: S=(4×3²)÷0,5=72 см².
Источники:
  • http://www.clascalc.ru/area.htm
  • http://www.math.ru/dic/288
Видео по теме
Источники:
  • Трапеция
  • как находить площадь трапеции
ПОИСК
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500