Совет 1: Как найти угол, если известны стороны

Многоугольником называется фигура на плоскости, состоящая из трёх и более сторон, которые пересекаются в трёх и более точках. Многоугольник называется выпуклым, если каждый его угол меньше 180º. Обычно, в качестве многоугольников рассматривают именно выпуклые многоугольники. Для нахождения углов многоугольника нужно иметь минимально необходимый набор исходных данных. Пусть для многоугольника известны длины всех его сторон.
Инструкция
1
Многоугольник называется правильным, если его стороны равны между собой, а так же все углы равны между собой.
Если заранее известно, что многоугольник является правильным, то углы можно высчитать по формуле
?? = 180? * (n - 2)/n, где n – количество сторон многоугольника.
Например, в случае правильного восьмиугольника
?? = 180? * (8 - 2)/8 = 135?
Как найти угол, если известны <b>стороны</b>
2
Для неправильного треугольника с известными сторонами, углы можно рассчитать по теореме косинусов, например, для угла ?? в приведённом рисунке формула примет вид
cos?? = (b? + c? - a?) / 2 • b • c
Как найти угол, если известны <b>стороны</b>
3
Для нахождения углов неправильных многоугольников с количеством сторон больше 3 наличие длин сторон не является достаточным условием.

Совет 2: Как найти угол у треугольника, если известны две стороны?

В прямоугольном треугольнике можно достаточно просто найти угол, если известны две его стороны. Один из углов равен 90 градусов, два других являются всегда острыми. Вот эти углы и нужно будет найти. Для того, чтобы найти острый угол в прямоугольном треугольнике, необходимо знать значения всех трех его сторон. В зависимости от того, какие стороны вам известны, синусы острых углов можно найти, используя формулы для тригонометрических функций. Для отыскания значения угла по синусу используются четырехзначные математические таблицы.
Вам понадобится
  • - Теорема Пифагора;
  • - тригонометрическая функция sin;
  • - четырехзначные математические таблицы Брадиса.
Инструкция
1
Используйте следующие обозначения для удобства составления формул, необходимых для расчетов: c – гипотенуза прямоугольного треугольника; a, b - катеты, которые образуют прямой угол; A – острый угол, находящийся напротив катета b; B - острый угол, находящийся напротив катета a.
2
Вычислите, чему равна длина неизвестной стороны треугольника. Примените для вычислений теорему Пифагора. Вычислите катет a, если известны значения гипотенузы c и катета b. Для этого вычтите из квадрата гипотенузы c квадрат катета b, а затем вычислите квадратный корень из полученного результата.
3
Вычислите катет b, если известны значения гипотенузы c и катета a. Для этого вычтите из квадрата гипотенузы c квадрат катета a, а затем вычислите квадратный корень из полученного результата.
4
Вычислите значение гипотенузы c, если известны два катета. Для этого получите сумму квадратов катетов a и b, а затем вычислите квадратный корень из полученного результата и при необходимости округлите до четырех знаков после запятой.
5
Вычислите синус угла A по формуле sinA = a/c. Используйте для вычислений калькулятор. Округлите при необходимости значение синуса угла A до четырех знаков после запятой.
6
Вычислите синус угла B по формуле sinB = b/c. Используйте для вычислений калькулятор. Округлите при необходимости значение синуса угла B до четырех знаков после запятой.
7
Найдите углы A и B по значениям их синусов. Используйте для определения значений углов таблицу VIII из четырехзначных математических таблиц Брадиса. Найдите в данной таблице значения синусов. Передвигайтесь от найденного значения влево и из первого столбца «А» возьмите градусы. Передвигайтесь от найденного значения вверх и из верхней строки «А» возьмите минуты. Например, если sin(A) = 0,8949, то угол A равен 63 градуса 30 минут.
Источники:
  • Решение прямоугольных треугольников
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500