Совет 1: Как найти биссектрису треугольника

Делить угол пополам и вычислить длину линии, проведенной из его вершины к противоположной стороне, необходимо уметь раскройщикам, землемерам, монтажникам и людям некоторых других профессий.
Вам понадобится
  • Инструменты Карандаш Линейка Транспортир Таблицы синусов и косинусов Математические формулы и понятия: Определение биссектрисы Теоремы синусов и косинусов Теорема о биссектрисе
Инструкция
1
Постройте треугольник необходимой формы и величины, в зависимости от того, что вам дано? дфе стороны и угол между ними, три стороны или два угла и расположенная между ними сторона.

Обозначьте вершины углов и стороны традиционными латинскими буквами А, В и С. Вершины углов обозначают прописными буквами, противолежащие стороны - строчными. Обозначьте углы греческими буквами ?,? и ?

По теоремам синусов и косинусов вычислите размеры углов и сторон треугольника.
Как найти <strong>биссектрису</strong> <b>треугольника</b>
2
Вспомните определение биссектрисы. Биссектриса - прямая, делящая угол пополам. Биссектриса угла треугольника делит противолежащую сторону на два отрезка, отношение которых равно отношению двух прилежащих сторон треугольника.

Проведите биссектрисы углов. Полученные отрезки обозначьте названиами углов, написанными строчными буквами, с нижним индексом l. Сторона с делится на отрезки a и b с индексами l.

Вычислите длины получившихся отрезков по теореме синусов.
3
Вычислите длину биссектрисы по формуле:

Длина биссектрисы равна квадратному корню из произведения отрезков, на которые биссектриса делит противолежащую углу сторону, вычтенного из произведения прилежащих сторон.
Как найти <strong>биссектрису</strong> <b>треугольника</b>

Совет 2: Биссектриса треугольника и ее свойства

Биссектриса треугольника обладает рядом свойств. Если правильно их использовать, можно решать задачи разного уровня сложности. Но даже имея данные обо всех трех биссектрисах, нельзя построить треугольник.

Что такое биссектриса



Изучение свойств треугольников и решение задач, связанных с ними – интересный процесс. Он позволяет развивать одновременно и логику, и пространственное мышление. Одной из важных составляющих треугольника является биссектриса. Биссектриса является отрезком, который выходит из угла треугольника и делит его на равные части.

Во многих задачах по геометрии в условиях есть данные о биссектрисе, при этом требуется найти значение угла либо длину противоположной стороны и так далее. В других задачах необходимо найти параметры самой биссектрисы. Чтобы определить правильный ответ любой из задач, связанных с биссектрисой, нужно знать ее свойства.

Свойства биссектрисы



Во-первых, биссектриса – это геометрическое место точек, которые удалены на равные расстояния от сторон, прилегающих к углу.

Во-вторых, биссектриса треугольника делит противоположную углу сторону на отрезки, которые будут пропорциональны прилегающим сторонам. К примеру, есть треугольник АБС, в нем из угла Б выходит биссектриса, которая соединяет вершину угла с точкой М на прилегающей стороне АС. После проведения анализа, получим формулу: АМ/МС=АБ/БС.

В-третьих, точка, являющаяся пересечением биссектрис из всех углов треугольника, выступает как центр окружности, вписанной в данный треугольник.

В-четвертых, если две биссектрисы одного треугольника равны, значит, данный треугольник является равнобедренным.

В-пятых, если есть данные обо всех трех биссектрисах, то нельзя выполнить построение треугольника, даже если воспользоваться циркулем.

Нередко для решения задачи биссектриса неизвестна, необходимо найти ее длину. Чтобы решить задачу, нужно знать угол, из которого она выходит, а также длины сторон, прилегающих к нему. В таком случае длина биссектрисы равняется удвоенному произведению прилегающих сторон на косинус угла, поделенное пополам на сумму длин прилегающих сторон.

Прямоугольный треугольник



В прямоугольном треугольнике биссектриса обладает теми же свойствами, что и в обычном. Но добавляется дополнительное свойство – биссектриса прямого угла образует при пересечении угол в 45 градусов. Более того, в равнобедренном прямоугольном треугольнике биссектриса, которая опущена на основание, будет также выступать как высота и медиана.
Видео по теме
Обратите внимание
Длина отрезка, которая одновременно является стороной треугольника, образованного одной из сторон исходного треугольника, биссектрисой и собственно отрезком, вычисляется по теореме синусов. Для того, чтобы вычислить длину другого отрезка этой же стороны, воспользуйтесь соотношением получившихся отрезков и прилежащих сторон исходного треугольника.
Полезный совет
Для того, чтобы не запутаться, проведите биссектрисы разных углов разным цветом.
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500