Совет 1: Как найти длину стороны треугольника

Треугольник – это фигура, состоящая из трех точек, не лежащих на одной прямой, и трех отрезков соединяющих эти точки попарно. Точки называются вершинами (обозначаются заглавными буквами), а отрезки сторонами (обозначаются малыми буквами) треугольника. Различают следующие типы треугольников: остроугольный треугольник (все три угла острые), тупоугольный треугольник (один из углов тупой), прямоугольный треугольник (один из углов прямой), равнобедренный (две его стороны равны), равносторонний (все его стороны равны). Найти сторону треугольника можно разными способами, но это всегда будет зависеть от типа треугольника и исходных данных.
Инструкция
1
Соотношение сторон и углов в прямоугольном треугольнике:
Пусть ABC – прямоугольный треугольник, угол С – прямой, углы A и B – острые. Тогда согласно определению косинуса: косинус угла A равен отношению прилежащего катета BC к гипотенузе AB. Синусом угла А называется отношение противолежащего катета BC к гипотенузе AB. Тангенсом угла А называется отношение противолежащего катета BC к прилежащему AC.Из данных определений получаем следующие соотношения:
Катет, противолежащий углу А, равен произведению гипотенузы на синус А, или равен произведению второго катета на тангенс А;
Катет, прилежащий к углу А, равен произведению гипотенузы на косинус А;
В прямоугольном треугольнике любая из сторон может быть вычислена по теореме Пифагора, если известны две другие. Теорема Пифагора: в прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.
Как найти <em>длину</em> <b>стороны</b> <strong>треугольника</strong>
2
Соотношение сторон в произвольном треугольнике:
Теорема косинусов. Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними.
Теорема синусов. Стороны треугольника пропорциональны синусам противолежащих углов.
Как найти <em>длину</em> <b>стороны</b> <strong>треугольника</strong>

Совет 2: Как найти углы треугольника по длинам его сторон

Есть несколько вариантов нахождения величин всех углов в треугольнике, если известны длины трех его сторон. Один из способов заключается в использовании двух разных формул вычисления площади треугольника. Для упрощения расчетов можно также применить теорему синусов и теорему о сумме углов треугольника.
Инструкция
1
Воспользуйтесь, например, двумя формулами вычисления площади треугольника, в одной из которых задействованы только три его известных стороны (формула Герона), а в другой - две стороны и синус угла между ними. Используя во второй формуле разные пары сторон, вы сможете определить величины каждого из углов треугольника.
2
Решите задачу в общем виде. Формула Герона определяет площадь треугольника, как квадратный корень из произведения полупериметра (половины от суммы всех сторон) на разницы между полупериметром и каждой из сторон. Если заменить периметр суммой сторон, то формулу можно записать в таком виде: S=0,25∗√(a+b+c)∗(b+c-a)∗(a+c-b)∗(a+b-c).C другой стороны площадь треугольника можно выразить как половину произведения двух его сторон на синус угла между ними. Например, для сторон a и b с углом γ между ними эту формулу можно записать так: S=a∗b∗sin(γ). Замените левую часть равенства формулой Герона: 0,25∗√(a+b+c)∗(b+c-a)∗(a+c-b)∗(a+b-c)=a∗b∗sin(γ). Выведите из этого равенства формулу для синуса угла γ: sin(γ)=0,25∗√(a+b+c)∗(b+c-a)∗(a+c-b)∗(a+b-c) / (a∗b∗)
3
Аналогичные формулы для двух других углов:
sin(α)=0,25∗√(a+b+c)∗(b+c-a)∗(a+c-b)∗(a+b-c) / (b∗c∗)
sin(β)=0,25∗√(a+b+c)∗(b+c-a)∗(a+c-b)∗(a+b-c) / (a∗c∗)Вместо этих формул можно воспользоваться теоремой синусов, из которой вытекает, что соотношения сторон и синусов противолежащих им углов в треугольнике равны. То есть, вычислив в предыдущем шаге синус одного из углов, можно найти синус другого угла по более простой формуле: sin(α)=sin(γ)∗a/c. А исходя из того, что сумма углов в треугольнике равна 180°, третий угол можно рассчитать еще проще: β=180°-α-γ.
4
Используйте, например, стандартный калькулятор Windows для нахождения величин углов в градусах после того, как по формулам рассчитаете значения синусов этих углов. Чтобы это сделать, применяйте тригонометрическую функцию, обратную синусу - арксинус.

Совет 3: Как найти косинус угла треугольника с вершинами

Косинусом угла называется отношение прилежащего к данному углу катета к гипотенузе. Эта величина, как и другие тригонометрические соотношения, используется для решения не только прямоугольных треугольников, но и многих других задач.
Инструкция
1
Для произвольного треугольника с вершинами А, В и С задача нахождения косинуса одинакова для всех трех углов, если треугольник остроугольный. Если в треугольнике есть тупой угол, определение его косинуса следует рассмотреть отдельно.
2
В остроугольном треугольнике с вершинами А, В и С найдите косинус угла при вершине А. Опустите высоту из вершины В на сторону треугольника АС. Точку пересечения высоты со стороной АС обозначьте D и рассмотрите прямоугольный треугольник АВD. В этом треугольнике сторона АВ исходного треугольника является гипотенузой, а катеты — высота ВD исходного остроугольного треугольника и отрезок АD, принадлежащий стороне АС. Косинус угла А равен отношению АD/АВ, поскольку катет АD является прилежащим к углу А в прямоугольном треугольнике АВD. Если известно, в каком соотношении высота ВD делит сторону АС треугольника, то косинус угла А найден.
3
Если же величина АD не дана, но известна высота ВD, косинус угла можно определить через его синус. Синус угла А равен отношению высоты ВD исходного треугольника к стороне АС. Основное тригонометрическое тождество устанавливает связь между синусом и косинусом угла:

Sin² A+ Cos² A=1. Для нахождения косинуса угла А вычислите: 1- (ВD/AC)², из полученного результата нужно извлечь квадратный корень. Косинус угла А найден.
4
Если в треугольнике известны все стороны, то косинус любого угла найдите по теореме косинусов: квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними. Тогда косинус угла А в треугольнике со сторонами а, b, с вычислите по формуле: Cos A = (а²-b²-c²)/2*b*с.
5
Если в треугольнике нужно определить косинус тупого угла, воспользуйтесь формулой приведения. Тупой угол треугольника больше прямого, но меньше развернутого, он может быть записан как 180°-α, где α — острый угол, дополняющий тупой угол треугольника до развернутого. По формуле приведения найдите косинус: Cos (180°-α)= Cos α.

Совет 4: Как вычислить длину стороны треугольника

Для вычисления длин сторон в произвольном треугольнике чаще всего приходится применять теоремы синусов и косинусов. Но среди всего множества произвольных многоугольников этого рода существуют их «более правильные» вариации - равносторонние, равнобедренные, прямоугольные. Если о треугольнике известно, что он принадлежит к одной из этих разновидностей, способы вычисления его параметров значительно упрощаются. При вычислении длин их сторон часто можно обойтись без тригонометрических функций.
Инструкция
1
Длину стороны (А) равностороннего треугольника можно найти по радиусу вписанной в него окружности (r). Для этого увеличьте ее в шесть раз и разделите на квадратный корень из тройки: А = r*6/√3.
2
Зная радиус описанной окружности (R), тоже можно вычислить длину стороны (А) правильного треугольника. Этот радиус вдвое больше использованного в предыдущей формуле, поэтому утройте его и тоже поделите на квадратный корень из тройки: А = R*3/√3.
3
По периметру (Р) равностороннего треугольника вычислить длину его стороны (А) еще проще, так как длины сторон в этой фигуре одинаковы. Просто разделите периметр натрое: А = Р/3.
4
В равнобедренном треугольнике вычисление длины стороны по известному периметру немного сложнее - нужно знать еще и длину хотя бы одной из сторон. Если известна длина стороны А, лежащей в основании фигуры, длину любой из боковых (В) находите делением пополам разности между периметром (Р) и размером основания: В = (Р-А)/2. А если известна боковая сторона, то длину основания определяйте вычитанием из периметра удвоенной длины боковой: А = Р-2*В.
5
Знания площади (S), занимаемой на плоскости правильным треугольником, тоже достаточно для нахождения длины его стороны (А). Извлеките квадратный корень из соотношения площади и квадратного корня из тройки, а полученный результат удвойте: А = 2*√(S/√3).
6
В прямоугольном треугольнике, в отличие от любого другого, для вычисления длины одной из сторон достаточно знать длины двух других. Если искомая сторона - гипотенуза (С), для этого находите квадратный корень из суммы длин известных сторон (А и В), возведенных в квадрат: С = √(А²+В²). А если вычислить требуется длину одного из катетов, то квадратный корень следует извлекать из разности квадратов длин гипотенузы и другого катета: А = √(С²-В²).
Источники:
  • как вычислить сторону равностороннего треугольника

Совет 5: Как найти длину стороны треугольника по координатам

Геометрические задачи любого уровня высокого уровня сложности предполагают наличия у человека умения решать элементарные задачи. В противном случае возможность получения требуемого результата значительно снижается. Помимо процесса практически интуитивного нащупывания правильного способа, ведущего к нужному вам итогу, вы с необходимостью должны уметь рассчитывать площади, знать большое количество вспомогательных теорем, свободно проводить вычисления в координатной плоскости.
Инструкция
1
Воспользуйтесь формулой для вычисления длины отрезка, если в вашей задаче в явном виде заданы координаты вершин треугольника. Для этого проделайте ряд простых шагов. Сперва вычислите разницу между координатами соответствующих точек по оси абсцисс и оси ординат. Полученные результаты возведите в квадрат и суммируйте. Квадратный корень из результирующей величины и будет искомой длиной отрезка.
2
Проанализируйте все данные задачи, если отсутствуют данные для простого решения задачи. Выпишите отдельно все, что перечислено в условии. Обратите внимание на тип описываемого треугольника. Если он прямоугольный, то вам достаточно знать координаты двух вершин: длину третьей стороны вы сможете найти, воспользовавшись формулой Пифагора. Также упрощается ситуация при работе с равнобедренным или равносторонним треугольниками.
3
Обращайте внимание на некоторые характерные элементы условия, которые содержат в себе подсказку. К примеру, в тексте может быть упомянуто, что вершина треугольника лежит на одной из осей (что уже дает вам информацию об одной из координат), проходит через начало координат. Все это важно выписать, чтобы обладать полной информацией.
4
Не забывайте о формулах, позволяющих выразить стороны треугольника через другие его элементы, а также о существующих пропорциональных отношениях. К числу минимальных вспомогательных уравнений, которые вам пригодятся, относятся формулы для нахождения высоты, медианы и биссектрисы треугольников. Кроме того, запомните, что две стороны треугольника находятся в таком же отношении друг к другу, как и отрезки, на которые разбивает биссектриса, проведенная к третьей его стороне.
5
Будьте готовы к тому, что если вы используете в решении те или иные формулы или теоремы, вас могут попросить доказать их или описать процедуру вывода.
Источники:
  • нахождение площади треугольника по координатам

Совет 6: Как найти длину отрезка треугольника

В произвольном треугольнике можно выделить несколько отрезков, длины которых приходится вычислять наиболее часто. Эти отрезки соединяют точки, лежащие в вершинах треугольника, в серединах его сторон, в центрах вписанной и описанной окружностей, а также другие значимые для геометрии треугольника точки. Некоторые варианты расчета длин таких отрезков в евклидовой геометрии приведены ниже.
Инструкция
1
Если отрезок, который требуется найти, соединяет любые две вершины произвольного треугольника, то он является одной из сторон этой геометрической фигуры. Если известны, например, длины двух других сторон (А и B) и величина угла, который они образуют (γ), то длину этого отрезка (С) вы можете рассчитать, исходя из теоремы косинусов. Сложите квадраты длин сторон, отнимите от результата две длины этих же сторон, умноженных на косинус известного угла, а затем найдите квадратный корень из полученного значения: C=√(А²+B²-2*А*B*cos(γ)).
2
Если отрезок начинается в одной из вершин треугольника, заканчивается на противолежащей стороне и перпендикулярен ей, то такой отрезок называется высотой (h). Найти его можно, например, зная площадь (S) и длину (A) той стороны, на которую опущена высота - разделите удвоенную площадь на длину стороны: h=2*S/A.
3
Если отрезок соединяет середину любой стороны произвольного треугольника и вершину, лежащую напротив этой стороны, то называется этот отрезок медианой (m). Найти его длину можно, например, зная длины всех сторон (A, B, C) - сложите удвоенные квадраты длин двух сторон, отнимите от полученного значения квадрат той стороны, на середине которой заканчивается отрезок, а затем найдите квадратный корень из четверти полученного результата: m=√((2*А²+2*B²-C²)/4).
4
Если отрезок соединяет центр вписанной в произвольный треугольник окружности и любую из точек касания этой окружности со сторонами треугольника, то найти его длину можно, вычислив радиус (r) вписанной окружности. Для этого, например, разделите площадь (S) треугольника на его периметр (P): r=S/P.
5
Если отрезок соединяет центр окружности, описанной около произвольного треугольника, с любой из вершин этой фигуры, то его длину можно рассчитать, найдя радиус описанной окружности (R). Если известны, например, длина одной из сторон (A) в таком треугольнике и угол (α), лежащий напротив нее, то для вычисления длины нужного вам отрезка разделите длину стороны на удвоенный синус угла: R=A/(2*sin(α)).
Видео по теме

Совет 7: Как найти стороны треугольника, если даны все углы

Для того, чтобы узнать все стороны треугольника, нужно знать величину угла и два прилегающих к нему катета или величину двух углов и стороны между ними. Если вам известны все углы этого треугольника, то найти длину всех сторон треугольника нельзя, но можно найти отношение сторон этого треугольника.
Инструкция
1
В первом случае известны такие данные в треугольнике, как величина угла и длина катетов, образующих этот угол. Сторону, противолежащую известному углу, необходимо находить по теореме косинусов, согласно которой необходимо длины известных сторон возвести в квадрат и сложить, затем отнять от полученной суммы произведение этих сторон, умноженное на два и на косинус известного угла.
Формула данного вычисления выглядит следующим образом:

h = √(e2+f2 – 2ef*cosA), где:

e и f – длины известных катетов;

h – неизвестный катет (или сторона);

A – угол, образованный известными катетами.
2
Во втором случае, когда известны два угла и катет между ними данного треугольника, нужно пользоваться теоремой синусов. Согласно данной теореме, если разделить синус угла на его длину противолежащего катета, то получится отношение, равное любому другому в этом треугольнике. Также, если вам неизвестен нужный катет, вы можете его легко найти, зная тот факт, что сумма углов треугольника равна стам восьмидесяти градусам.
Данное утверждение можно представить в виде формулы:

SinD/d = sinF/f = sinE/e, где:

D, F, E – величины противолежащих углов;

d, f, e – катеты, противолежащие соответствующим углам.
3
В третьем случае известны только углы данного треугольника, поэтому нельзя узнать длину всех сторон данного треугольника. Зато можно найти отношение этих сторон и методом подбора найти похожий треугольник. Отношение сторон данного треугольника находится с помощью составления системы из трех уравнений с тремя неизвестными.
Вот формула для составления:

d/sinD

f/sinF

e/sinE, где:

d, f, e – неизвестные катеты треугольника;

D, F, E – углы, противолежащие неизвестным катетам.
4
Данное уравнение решается следующим образом:
d/sinD = f/sinF = e/sinE

(d*sinF*sinE-f* sinD* sinE-e* sinD* sinF)/ sinD* sinE* sinF.
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500