Совет 1: Как найти основания трапеции

Основания трапеции можно найти несколькими способами, в зависимости от заданных параметров. При известной площади, высоте и боковой стороне равнобокой трапеции последовательность расчетов сводится к вычислениям стороны равнобедренного треугольника. А также к использованию свойства равнобокой трапеции.
Как найти основания трапеции
Инструкция
1
Начертите равнобокую трапецию. Дана площадь трапеции - S, высота трапеции - h и боковая сторона - a. Опустите высоту трапеции на большее основание. Большее основание будет разделено на отрезки m и n.
Как найти основания трапеции
2
Для определения длины обоих оснований (х, y) примените свойство равнобокой трапеции и формулу расчета площади трапеции.
3
Согласно свойству равнобокой трапеции отрезок n равен полуразности оснований х и y. Следовательно, меньшее основание трапеции y можно представить в виде разности большего основания и отрезка n, помноженного на два: y = x - 2*n.
Как найти основания трапеции
4
Найдите неизвестный меньший отрезок n. Для этого вычислите одну их сторон получившегося прямоугольного треугольника. Треугольник образован высотой – h (катет), боковой стороной – a (гипотенуза) и отрезком – n (катет). Согласно теореме Пифагора неизвестный катет n² = a² - h². Подставьте известные числовые значения и высчитайте квадрат катета n. Возьмите корень квадратный из полученного значения – это и будет длина отрезка n.
Как найти основания трапеции
5
Подставьте полученное значение в первое уравнение для вычисления y. Площадь трапеции высчитывается по формуле S = ((х + y)*h)/2. Выразите неизвестную переменную: y = 2*S/h – х.
Как найти основания трапеции
6
Запишите оба полученных уравнения в систему. Подставляя известные значения, найдите две искомые величины в системе двух уравнений. Полученное решение системы х представляет собой длину большего основания, а y - меньшего основания.
Как найти основания трапеции

Совет 2: Как найти длину основания трапеции

Для задания такого четырехугольника, как трапеция, должно быть определено не менее трех его сторон. Поэтому, для примера, можно рассмотреть задачу, в условии которой заданы длины диагоналей трапеции, а также один из векторов боковой стороны.
Как найти длину основания трапеции
Инструкция
1
Фигура из условия задачи представлена на рисунке 1.В данном случае следует предположить, что рассматриваемая трапеция – это четырехугольник AВCD, в котором заданы длины диагоналей AC и BD, а также боковая сторона АВ, представленная вектором a(ax,ay). Принятые исходные данные позволяют найти оба основания трапеции (как верхнее, так и нижнее). В конкретном примере сначала будет найдено нижнее основание АD.
2
Рассмотрите треугольник ABD. Длина его стороны АВ равна модулю вектора a. Пусть|a|=sqrt((ax)^2+(ay)^2)=a, тогда cosф =ax/sqrt(((ax)^2+(ay)^2), как направляющий косинус a. Пусть заданная диагональ BD имеет длину p, а искомая AD длину х. Тогда, по теореме косинусов, P^2=a^2+ x^2-2axcosф. Или x^2-2axcosф+(a^2-p^2)=0.
3
Решения этого квадратного уравнения:X1=(2acosф+sqrt(4(a^2)((cosф)^2)-4(a^2-p^2)))/2=acosф+sqrt((a^2)((cosф)^2)-(a^2-p^2))==a*ax|sqrt(((ax)^2+(ay)^2)+sqrt((((a)^2)(ax^2))/(ax^2+ay^2))-a^2+ p^2)=AD.
4
Для нахождения верхнего основания ВС (его длина при поиске решения также обозначена х) используется модуль |a|=a, а также вторая диагональ BD=q и косинус угла АВС, который, очевидно, равен (п-ф).
5
Далее рассматривается треугольник АВС, к которому, как и ранее, применяется теорема косинусов, и возникает следующее решение. Учитывая, что cos(п-ф)=-cosф, на основе решения для AD, можно записать следующую формулу, заменив p на q:ВС=- a*ax|sqrt(((ax)^2+(ay)^2)+sqrt((((a)^2)(ax^2))/(ax^2+ay^2))-a^2+q^2).
6
Данное уравнение является квадратным и, соответственно, имеет два корня. Таким образом, в данном случае остается выбрать лишь те корни, которые имеют положительное значение, так как длина не может быть отрицательной.
7
ПримерПусть в трапеции АВСD боковая сторона АВ задана вектором a(1, sqrt3), p=4, q=6. Найти основания трапеции.Решение. Используя полученные выше алгоритмы можно записать:|a|=a=2, cosф=1/2. AD=1/2+sqrt(4/4 -4+16)=1/2 +sqrt(13)=(sqrt(13)+1)/2.BC=-1/2+sqrt(-3+36)=(sqrt(33)-1)/2.
Источники:
  • высота равнобокой трапеции
ПОИСК
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500