Совет 1: Как найти угол в трапеции

Трапеция - это плоский четырехугольник, у которого две противолежащие стороны параллельны. Они называются основаниями трапеции, а две другие стороны - боковыми сторонами трапеции.
Инструкция
1
Задача нахождения произвольного угла в трапеции требует достаточного количества дополнительных данных. Рассмотрим пример, в котором известны два угла при основании трапеции. Пусть известны углы ∠BAD и ∠CDA, найдем углы ∠ABC и ∠BCD. Трапеция обладает таким свойством, что сумма углов при каждой боковой стороне равна 180°. Тогда ∠ABC = 180°-∠BAD, а ∠BCD = 180°-∠CDA.
Как найти угол в <b>трапеции</b>
2
В другой задаче может быть указано равенство сторон трапеции и какие-нибудь дополнительные углы. Например, как на рисунке, может быть известно, что стороны AB, BC и CD равны, а диагональ составляет с нижним основанием угол ∠CAD = α.Рассмотрим треугольник ABC, он равнобедренный, так как AB = BC. Тогда ∠BAC = ∠BCA. Обозначим его x для краткости, а ∠ABC - y. Сумма углов любого треугольника равна 180°, из этого следует, что 2x + y = 180°, тогда y = 180° - 2x. В то же время из свойств трапеции: y + x + α = 180° и следовательно 180° - 2x + x + α = 180°. Таким образом, x = α. Мы нашли два угла трапеции: ∠BAC = 2x = 2α и ∠ABC = y = 180° - 2α.Так как AB = CD по условию, то трапеция равнобокая или равнобедренная. Значит, диагонали равны и равны углы при основаниях. Таким образом, ∠CDA = 2α, а ∠BCD = 180° - 2α.
Как найти угол в <b>трапеции</b>

Совет 2: Как найти угол между диагоналям

Диагональ многоугольника - отрезок, который соединяет две не граничащие между собой вершины фигуры (т.е. несмежные вершины или не принадлежащие одной стороне многоугольника). В параллелограмме, зная длину диагоналей и длину сторон, можно рассчитать углы между диагоналями.
Инструкция
1
Для удобства восприятия информации начертите на листе бумаги произвольный параллелограмм АВСD (параллелограмм – это четырехугольник, противоположные стороны которого попарно равны и параллельны). Соедините противоположные вершины отрезками. Полученные АС и ВD – диагонали. Обозначьте точку пересечения диагоналей буквой О. Необходимо найти углы ВОС (АОD) и СOD (АОВ).
2
Параллелограмм обладает целым рядом математических свойств:- диагонали точкой пересечения делятся пополам; - диагональ параллелограмма делит его на два равных треугольника;- сумма всех углов в параллелограмме равна 360 градусов;- сумма углов, прилежащих к одной стороне параллелограмма, равна 180 градусам;- сумма квадратов диагоналей равна двойной сумме квадратов его смежных сторон.
3
Чтобы найти углы между диагоналями, воспользуйтесь теоремой косинусов из теории элементарной геометрии (Евклидовой). Согласно теореме косинусов, квадрат стороны треугольника (A) можно получить, сложив квадраты двух его других сторон (B и C), и из полученной суммы вычесть двойное произведение этих сторон (B и C) на косинус угла между ними.
4
Применительно к треугольнику ВОС параллелограмма АВСD теорема косинусов будет выглядеть следующим образом:Квадрат ВС = квадрат ВО + квадрат ОС – 2*ВО*ОС*cos угла ВOCОтсюда соs угла BOC = (квадрат ВС –квадрат ВО – квадрат ОС) / (2*ВО*ОС)
5
Найдя значение угла ВОС (АОD) легко вычислить значение другого угла, заключенного между диагоналями – СОD (АОВ). Для этого из 180 градусов вычтите значение угла ВОС (АОD) – т.к. сумма смежных углов равна 180 градусам, а углы ВОС и СОD и углы АОD и АОВ – смежные.
Видео по теме

Совет 3: Как найти углы четырёхугольника

Для решения этой задачи методами векторной алгебры, вам необходимо знать следующие понятия: геометрическая векторная сумма и скалярное произведение векторов, а также следует помнить свойство суммы внутренних углов четырехугольника.
Вам понадобится
  • - бумага;
  • - ручка;
  • - линейка.
Инструкция
1
Вектор – это направленный отрезок, то есть величина, считающаяся заданной полностью, если задана его длина и направление (угол) к заданной оси. Положение вектора больше ничем не ограничено. Равными считаются два вектора, обладающие одинаковыми длинами и одним направлением. Поэтому при использовании координат векторы изображают радиус-векторами точек его конца (начало располагается в начале координат).
2
По определению: результирующим вектором геометрической суммы векторов называется вектор, исходящий из начала первого и имеющего конец в конце второго, при условии, что конец первого, совмещен с началом второго. Это можно продолжать и далее, строя цепочку аналогично расположенных векторов.
Изобразите заданный четырехугольник ABCD векторами a, b, c и d в соответствии рис. 1. Очевидно, что при таком расположении результирующий вектор d=a+ b+c.
Как найти углы четырёхугольника
3
Скалярное произведение в данном случае удобнее всего определить на основе векторов a и d. Скалярное произведение, обозначаемое (a, d)= |a||d|cosф1. Здесь ф1 – угол между векторами a и d.
Скалярное произведение векторов, заданных координатами, определяется следующими выражением:
(a(ax, ay), d(dx, dy))=axdx+aydy, |a|^2= ax^2+ ay^2, |d|^2= dx^2+ dy^2, тогда
cos Ф1=(axdx+aydy)/(sqrt(ax^2+ ay^2)sqrt(dx^2+ dy^2)).
4
Основные понятия векторной алгебры в привязке к поставленной задаче, приводят к тому, что для однозначной постановки этой задачи достаточно задание трех векторов, расположенных, допустим, на AB, BC, и CD, то есть a, b, c. Можно конечно сразу задать координаты точек A, B, C, D, но этот способ является избыточным (4 параметра вместо 3-х).
5
Пример. Четырехугольник ABCD задан векторами его сторон AB, BC, CD a(1,0), b(1,1), c(-1,2). Найти углы между его сторонами.
Решение. В связи с изложенным выше, 4-й вектор (для AD)
d(dx,dy)=a+ b+c={ax+bx +cx, ay+by+cy}={1,3}. Следуя методике вычисления угла между векторами а
cosф1=(axdx+aydy)/(sqrt(ax^2+ ay^2)sqrt(dx^2+ dy^2))=1/sqrt(10), ф1=arcos(1/sqrt(10)).
-cosф2=(axbx+ayby)/(sqrt(ax^2+ ay^2)sqrt(bx^2+ by^2))=1/sqrt2, ф2=arcos(-1/sqrt2), ф2=3п/4.
-cosф3=(bxcx+bycy)/(sqrt(bx^2+ by^2)sqrt(cx^2+ cy^2))=1/(sqrt2sqrt5), ф3=arcos(-1/sqrt(10))=п-ф1.
В соответствии с замечанием 2 - ф4=2п- ф1 - ф2- ф3=п/4.
Видео по теме
Обратите внимание
Замечание 1. В определении скалярного произведения используется угол между векторами. Здесь, например, ф2 - это угол между АВ и ВС, а между a и b этот угол п-ф2. сos(п- ф2)=- сosф2. Аналогично для ф3.
Замечание 2. Известно, что сумма углов четырехугольника равна 2п. Поэтому ф4=2п- ф1 - ф2- ф3.
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500