Совет 1: Как найти наибольшее наименьшее значение функции

Выдающийся немецкий математик Карл Вейерштрасс доказал, что для каждой непрерывной на отрезке функции существуют ее наибольшее и наименьшее значение на этом отрезке. Задача определения наибольшего и наименьшего значения функции имеет широкое прикладное значение в экономике, математике, физике и других науках.
Как найти наибольшее наименьшее значение функции
Вам понадобится
  • чистый лист бумаги;
  • ручка или карандаш;
  • учебник по высшей математике.
Инструкция
1
Пусть функция f(x) непрерывна и определена на заданном отрезке [a; b] и имеет на нем некоторое (конечное) количество критических точек. Первым делом найдем производную функции f'(x) по х.
2
Приравниваем производную функции к нулю, чтобы определить критические точки функции. Не забываем определить точки, в которых производная не существует - они также являются критическими.
3
Из множества найденных критических точек выбираем те, которые принадлежат отрезку [a; b]. Вычисляем значения функции f(x) в этих точках и на концах отрезка.
4
Из множества найденных значений функции выбираем максимальное и минимальное значения. Это и есть искомые наибольшее и наименьшее значения функции на отрезке.

Совет 2: Как определить наибольшее значение функции

Исследование такого объекта математического анализа как функция имеет большое значение и в других областях науки. Например, в экономическом анализе постоянно требуется оценить поведение функции прибыли, а именно определить ее наибольшее значение и разработать стратегию его достижения.
Как определить наибольшее значение функции
Инструкция
1
Исследование поведения любой функции всегда следует начинать с поиска области определения. Обычно по условию конкретной задачи требуется определить наибольшее значение функции либо на всей этой области, либо на конкретном ее интервале с открытыми или закрытыми границами.
2
Исходя из названия, наибольшим является такое значение функции y(x0), при котором для любой точки области определения выполняется неравенство y(x0) ≥ y(x) (х ≠ x0). Графически эта точка будет наивысшей, если расположить значения аргумента по оси абсцисс, а саму функцию по оси ординат.
3
Чтобы определить наибольшее значение функции, следуйте алгоритму из трех этапов. Учтите, что вы должны уметь работать с односторонними и бесконечными пределами, а также вычислять производную. Итак, пусть задана некоторая функция y(x) и требуется найти ее наибольшее значение на некотором интервале с граничными значениями А и В.
4
Выясните, входит ли этот интервал в область определения функции. Для этого необходимо ее найти, рассмотрев все возможные ограничения: присутствие в выражении дроби, логарифма, квадратного корня и т.д. Область определения – это множество значений аргумента, при которых функция имеет смысл. Определите, является ли данный интервал его подмножеством. Если да, то переходите к следующему этапу.
5
Найдите производную функции и решите полученное уравнение, приравняв производную к нулю. Таким образом, вы получите значения так называемых стационарных точек. Оцените, принадлежит ли хоть одна из них интервалу А, В.
6
Рассмотрите на третьем этапе эти точки, подставьте их значения в функцию. В зависимости от типа интервала произведите следующие дополнительные действия. При наличии отрезка вида [А, В] граничные точки входят в интервал, об этом говорят квадратные скобки. Вычислите значения функции при х = А и х = В. Если открытый интервал (А, В), граничные значения являются выколотыми, т.е. не входят в него. Решите односторонние пределы для х→А и х→В. Комбинированный интервал вида [А, В) или (А, В], одна из границ которого принадлежит ему, другая – нет. Найдите односторонний предел при х, стремящемся к выколотому значению, а другое подставьте в функцию. Бесконечный двусторонний интервал (-∞, +∞) или односторонние бесконечные промежутки вида: [A, +∞), (A,+∞), (-∞; B], (-∞, B). Для действительных пределов А и В действуйте согласно уже описанным принципам, а для бесконечных ищите пределы для х→-∞ и х→+∞ соответственно.
7
Задача на этом этапе состоит в том, чтобы понять, соответствует ли стационарная точка наибольшему значению функции. Это так, если она превышает значения, полученные описанными способами. В случае, если задано несколько интервалов, стационарное значение учитывается только в том из них, который его перекрывает. Иначе рассчитывайте наибольшее значение по граничным точкам интервала. То же делайте в ситуации, когда стационарных точек попросту нет.
Видео по теме
Обратите внимание
Может получиться так, что односторонний предел примет бесконечное значение. Тогда однозначно определить наибольшее значение нельзя, можно лишь выявить максимальное значение (экстремум), к которому функция стремится.
Видео по теме
Источники:
  • Наибольшее и наименьшее значение функции
  • как указать наименьшее значение функции
ПОИСК
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500