Совет 1: Как по косинусу найти сторону треугольника

Знание значения косинуса угла в вершине произвольного треугольника позволяет найти величину этого угла. Но по единственному параметру невозможно узнать длину стороны такой фигуры, нужны какие-либо дополнительные связанные с ней величины. Если они даны в условиях, выбор формулы вычисления будет зависеть от того, какие именно параметры выбраны в качестве дополнения к косинусу угла.
Инструкция
1
Если кроме значения косинуса угла известны длины пары сторон (b и c), которые образуют этот угол, для вычисления величины неизвестной стороны (a) можно использовать теорему косинусов. Она утверждает, что квадрат длины нужной стороны будет равен сумме квадратов длин двух других, если ее уменьшить на удвоенное произведение длин этих же сторон на известный из условий косинус угла между ними: a² = b² + c² - 2*a*b*cos(α).
2
Поскольку величина угла α вам неизвестна и вычислять ее нет необходимости, обозначьте данную в условиях переменную (косинус угла) какой-либо буквой (например, f) и подставьте в формулу: a² = b² + c² - 2*a*b*f. Избавьтесь от степени в левой части выражения, чтобы получить в общем виде окончательную формулу вычисления длины искомой стороны: a = √(b²+c²-2*a*b*f).
3
Чтобы найти длину стороны (a), при условии, что кроме значения косинуса (f = cos(α)) лежащего напротив этой стороны угла, дана величина другого угла (β) и длина лежащей напротив нее стороны (b), можно использовать теорему синусов. Согласно ей отношение искомой длины к синусу противолежащего угла равно отношению длины известной стороны к синусу угла, который тоже дан в условиях: a/sin(a) = b/sin(β).
4
Сумма квадратов синуса и косинуса одного и того же угла равна единице - используйте это тождество, чтобы выразить синус в левой части равенства через заданный в условиях косинус: a/√(1-f²) = b/sin(β). Составьте формулу вычисления длины нужной стороны в общем виде, перенеся знаменатель дроби из левой части тождества в правую: a = √(1-f²)*b/sin(β).
5
В прямоугольном треугольнике для вычисления величин сторон достаточно дополнить косинус острого угла (f = cos(α)) одним параметром - длиной какой-либо из сторон. Чтобы найти длину катета (b), примыкающего к вершине, косинус угла которой известен, умножьте эту величину на длину гипотенузы (c): b = f*c. Если же нужно вычислить длину гипотенузы, а длина катета известна, трансформируйте эту формулу соответствующим образом: c = b/f.

Совет 2: Как найти сторону по стороне и двум углам

Геометрическая фигура, состоящая из трёх точек, не принадлежащих одной прямой называемых вершинами, и трёх попарно соединяющих их отрезков, называемых сторонами, называется треугольником. Существует множество задач на нахождение сторон и углов треугольника по ограниченному количеству исходных данных, одна из таких задач – нахождение стороны треугольника по одной из его сторон и двум углам.
Инструкция
1
Пусть построен треугольник ?ABC и известны – сторона BC и углы ?? и ??.
Известно, что сумма углов любого треугольника равна 180?, поэтому в треугольнике ?ABC угол ?? будет равен ?? = 180? - (?? + ??).
Найти стороны AC и AB можно используя теорему синусов, которая гласит
AB/sin?? = BC/sin?? = AC/sin?? = 2 * R, где R – радиус описанной около треугольника ?ABC окружности,
тогда получаем
R = BC/sin??,
AB = 2 * R * sin??,
AC = 2 * R * sin??.
Теорему синусов можно применять при любых данных двух углах и стороне.
Как найти <b>сторону</b> по <em>стороне</em> и двум <strong>углам</strong>
2
Стороны заданно треугольника можно найти, вычислив его площадь по формуле
S = 2 * R? * sin?? * sin?? * sin??,
где R вычисляется по формуле
R = BC/sin??, R – радиус описанной около треугольника ?ABC отсюда
Тогда сторону AB можно найти, вычислив высоту, опущенную на неё
h = BC * sin??,
отсюда по формуле S = 1/2 * h * AB имеем
AB = 2 * S/h
Аналогичным образом можно вычислить сторону AC.
Как найти <b>сторону</b> по <em>стороне</em> и двум <strong>углам</strong>
3
Если в качестве углов даны внешние углы треугольника ?? и ??, то найти внутренние углы можно с помощью соответствующих соотношений
?? = 180? - ??,
?? = 180? - ??,
?? = 180? - (?? + ??).
Далее действуем аналогично первым двум пунктам .
Как найти <b>сторону</b> по <em>стороне</em> и двум <strong>углам</strong>

Совет 3: Как найти угол, если даны вершины треугольника

Треугольник - это простейший многоугольник, для нахождения величин углов которого по известным параметрам (длинам сторон, радиусам вписанных и описанных окружностей и др.) существует несколько формул. Однако часто встречаются задачи, требующие расчета углов в вершинах треугольника, который помещен в некоторую пространственную систему координат.
Инструкция
1
Если треугольник задан координатами всех трех своих вершин (X₁,Y₁,Z₁, X₂,Y₂,Z₂ и X₃,Y₃,Z₃), то начните с вычисления длин сторон, образующих тот угол треугольника (α), величина которого вас интересует. Если любую из них достроить до прямоугольного треугольника, в котором сторона будет гипотенузой, а ее проекции на две оси координат - катетами, то ее длину можно найти по теореме Пифагора. Длины проекций будут равны разности координат начала и конца стороны (т.е. двух вершин треугольника) по соответствующей оси, а значит, длину можно выразить как квадратный корень из суммы квадратов разностей таких координатных пар. Для трехмерного пространства соответствующие формулы двух сторон треугольника можно записать так: √((X₁-X₂)² + (Y₁-Y₂)² + (Z₁-Z₂)²) и √((X₁-X₃)² + (Y₁-Y₃)² + (Z₁-Z₃)²).
2
Используйте две формулы скалярного произведения векторов - в данном случае векторами с общим началом являются стороны треугольника, образующие вычисляемый угол. Одна из формул выражает скалярное произведение через их длины, полученные вами на предыдущем шаге, и косинус угла между ними: √((X₁-X₂)² + (Y₁-Y₂)² + (Z₁-Z₂)²) * √((X₁-X₃)² + (Y₁-Y₃)² + (Z₁-Z₃)²) * cos(α). Другая - через сумму произведений координат по соответствующим осям: X₁*X₃ + Y₁*Y₃ + Z₁*Z₃.
3
Приравняйте эти две формулы и выразите из равенства косинус искомого угла: cos(α) = (X₁*X₃ + Y₁*Y₃ + Z₁*Z₃) / (√((X₁-X₂)² + (Y₁-Y₂)² + (Z₁-Z₂)²) * √((X₁-X₃)² + (Y₁-Y₃)² + (Z₁-Z₃)²)). Тригонометрическая функция, определяющая величину угла в градусах по значению его косинуса, называется арккосинусом - используйте ее для записи окончательного варианта формулы нахождения угла по трехмерным координатам треугольника: α = arccos((X₁*X₃ + Y₁*Y₃ + Z₁*Z₃) / (√((X₁-X₂)² + (Y₁-Y₂)² + (Z₁-Z₂)²) * √((X₁-X₃)² + (Y₁-Y₃)² + (Z₁-Z₃)²))).
Видео по теме
Источники:
  • треугольник задан вершинами найти высоту

Совет 4: Как вычислить длину стороны треугольника

Для вычисления длин сторон в произвольном треугольнике чаще всего приходится применять теоремы синусов и косинусов. Но среди всего множества произвольных многоугольников этого рода существуют их «более правильные» вариации - равносторонние, равнобедренные, прямоугольные. Если о треугольнике известно, что он принадлежит к одной из этих разновидностей, способы вычисления его параметров значительно упрощаются. При вычислении длин их сторон часто можно обойтись без тригонометрических функций.
Инструкция
1
Длину стороны (А) равностороннего треугольника можно найти по радиусу вписанной в него окружности (r). Для этого увеличьте ее в шесть раз и разделите на квадратный корень из тройки: А = r*6/√3.
2
Зная радиус описанной окружности (R), тоже можно вычислить длину стороны (А) правильного треугольника. Этот радиус вдвое больше использованного в предыдущей формуле, поэтому утройте его и тоже поделите на квадратный корень из тройки: А = R*3/√3.
3
По периметру (Р) равностороннего треугольника вычислить длину его стороны (А) еще проще, так как длины сторон в этой фигуре одинаковы. Просто разделите периметр натрое: А = Р/3.
4
В равнобедренном треугольнике вычисление длины стороны по известному периметру немного сложнее - нужно знать еще и длину хотя бы одной из сторон. Если известна длина стороны А, лежащей в основании фигуры, длину любой из боковых (В) находите делением пополам разности между периметром (Р) и размером основания: В = (Р-А)/2. А если известна боковая сторона, то длину основания определяйте вычитанием из периметра удвоенной длины боковой: А = Р-2*В.
5
Знания площади (S), занимаемой на плоскости правильным треугольником, тоже достаточно для нахождения длины его стороны (А). Извлеките квадратный корень из соотношения площади и квадратного корня из тройки, а полученный результат удвойте: А = 2*√(S/√3).
6
В прямоугольном треугольнике, в отличие от любого другого, для вычисления длины одной из сторон достаточно знать длины двух других. Если искомая сторона - гипотенуза (С), для этого находите квадратный корень из суммы длин известных сторон (А и В), возведенных в квадрат: С = √(А²+В²). А если вычислить требуется длину одного из катетов, то квадратный корень следует извлекать из разности квадратов длин гипотенузы и другого катета: А = √(С²-В²).
Источники:
  • как вычислить сторону равностороннего треугольника

Совет 5: Как найти сторону треугольника

Сторона треугольника – это прямая, ограниченная его вершинами. Всего их у фигуры три, это число определяет количество практически всех графических характеристик: угла, медианы, биссектрисы и т.д. Чтобы найти сторону треугольника, следует внимательно изучить начальные условия задачи и определить, какие из них могут стать основными или промежуточными величинами для расчета.
Инструкция
1
Стороны треугольника, как и других многоугольников, имеют собственные названия: боковые стороны, основание, а также гипотенуза и катеты у фигуры с прямым углом. Это облегчает расчеты и формулы, делая их более очевидными даже если треугольник произвольный. Фигура графическая, поэтому ее всегда можно расположить так, чтобы сделать решение задачи более наглядным.
2
Стороны любого треугольника связаны между собой и другими его характеристиками различными соотношениями, которые помогают вычислить требуемую величину в одно или несколько действий. При этом чем сложнее задача, тем длиннее последовательность шагов.
3
Решение упрощается, если треугольник стандартный: слова «прямоугольный», «равнобедренный», «равносторонний» сразу выделяют определенную взаимосвязь между его сторонами и углами.
4
Длины сторон в прямоугольном треугольнике связаны между собой теоремой Пифагора: сумма квадратов катетов равна квадрату гипотенузы. А углы, в свою очередь, связаны со сторонами теоремой синусов. Она утверждает равенство отношений между длинами сторон и тригонометрической функцией sin противолежащего угла. Впрочем, это верно для любого треугольника.
5
Две стороны равнобедренного треугольника равны между собой. Если их длина известна, вполне достаточно еще только одной величины, чтобы найти третью. Например, пусть известна высота, проведенная к ней. Этот отрезок делит третью сторону на две равные части и выделяет два прямоугольных треугольниках. Рассмотрев один из них, по теореме Пифагора найдите катет и умножьте на 2. Это и будет длина неизвестной стороны.
6
Сторону треугольника можно найти через другие стороны, углы, длины высоты, медианы, биссектрисы, величину периметра, площади, радиус вписанной окружности и т.д. Если нельзя сразу применить одну формулу, то произведите ряд промежуточных вычислений.
7
Рассмотрите пример: найдите сторону произвольного треугольника, зная медиану ma=5, проведенную к ней, и длины двух других медиан mb=7 и mc=8.
8
РешениеЗадача предполагает использование формул для медианы. Найти нужно сторону а. Очевидно, следует составить три уравнения с тремя неизвестными.
9
Запишите формулы для всех медиан:ma = 1/2•√(2•(b² + c²) – a²) = 5;mb = 1/2•√(2•(a² + c²) – b²) = 7;mc = 1/2•√(2•(a² + b²) – c²) = 8.
10
Выразите c² из третьего уравнения и подставьте ее во второе:c² = 256 – 2•a² – 2•b² b² = 20 → c² = 216 – a².
11
Возведите обе стороны первого уравнения в квадрат и найдите a, введя выраженные величины:25 = 1/4•(2•20 + 2•(216 – a²) – a²) → a ≈ 11,1.
Источники:
  • стороны треугольника это

Совет 6: Как найти косинус угла треугольника с вершинами

Косинусом угла называется отношение прилежащего к данному углу катета к гипотенузе. Эта величина, как и другие тригонометрические соотношения, используется для решения не только прямоугольных треугольников, но и многих других задач.
Инструкция
1
Для произвольного треугольника с вершинами А, В и С задача нахождения косинуса одинакова для всех трех углов, если треугольник остроугольный. Если в треугольнике есть тупой угол, определение его косинуса следует рассмотреть отдельно.
2
В остроугольном треугольнике с вершинами А, В и С найдите косинус угла при вершине А. Опустите высоту из вершины В на сторону треугольника АС. Точку пересечения высоты со стороной АС обозначьте D и рассмотрите прямоугольный треугольник АВD. В этом треугольнике сторона АВ исходного треугольника является гипотенузой, а катеты — высота ВD исходного остроугольного треугольника и отрезок АD, принадлежащий стороне АС. Косинус угла А равен отношению АD/АВ, поскольку катет АD является прилежащим к углу А в прямоугольном треугольнике АВD. Если известно, в каком соотношении высота ВD делит сторону АС треугольника, то косинус угла А найден.
3
Если же величина АD не дана, но известна высота ВD, косинус угла можно определить через его синус. Синус угла А равен отношению высоты ВD исходного треугольника к стороне АС. Основное тригонометрическое тождество устанавливает связь между синусом и косинусом угла:

Sin² A+ Cos² A=1. Для нахождения косинуса угла А вычислите: 1- (ВD/AC)², из полученного результата нужно извлечь квадратный корень. Косинус угла А найден.
4
Если в треугольнике известны все стороны, то косинус любого угла найдите по теореме косинусов: квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними. Тогда косинус угла А в треугольнике со сторонами а, b, с вычислите по формуле: Cos A = (а²-b²-c²)/2*b*с.
5
Если в треугольнике нужно определить косинус тупого угла, воспользуйтесь формулой приведения. Тупой угол треугольника больше прямого, но меньше развернутого, он может быть записан как 180°-α, где α — острый угол, дополняющий тупой угол треугольника до развернутого. По формуле приведения найдите косинус: Cos (180°-α)= Cos α.
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500