Инструкция
1
Чтобы определить абсолютную погрешность измерения, нужно найти величину отклонения от действительного значения. Она выражается в тех же единицах, что и оцениваемая, и равняется арифметической разности между истинным и расчетным значениями:∆ = x1 – x0.
2
Абсолютную погрешность часто используют в записи некоторых постоянных величин, имеющих бесконечно малое или бесконечно большое значение. Это касается многих физических и химических констант, например, постоянная Больцмана равна 1,380 6488×10^(−23) ± 0,000 0013×10^(−23) Дж/К, где значение абсолютной погрешности отделяется от истинного с помощью знака ±.
3
В рамках математической статистики измерения производятся в результате серии экспериментов, итогом которой является некоторая выборка значений. Анализ этой выборки опирается на методы теории вероятностей и предполагает построение вероятностной модели. В этом случае за абсолютную погрешность измерения принимается среднеквадратичное отклонение.
4
Для расчета среднеквадратичного отклонения необходимо определить среднее или средневзвешенное значение элементов выборки:xср = Σxi/n – среднее арифметическое, где xi – элементы выборки, n – ее объем;xвзв = ∑pi•xi/∑pi – среднее взвешенное.
5
Как видите, во втором случае учитываются веса элементов pi, которые показывают, с какой вероятностью измеряемая величина примет то или иное значение элемента выборки.
6
Классическая формула среднеквадратичного отклонения выглядит следующим образом:σ = √(∑(xi – xср)²/(n - 1)).
7
Существует понятие относительной погрешности, которая находится в прямой зависимости от абсолютной. Она равна отношению абсолютной погрешности к расчетному или действительному значению величины, выбор которого зависит от требований конкретной задачи.