Инструкция
1
Если известно, что треугольник является прямоугольным, это дает вам знание величины одного из углов, т.е. недостающего для расчетов третьего параметра. Искомая сторона (C) может быть гипотенузой - стороной, лежащей напротив прямого угла. Тогда для ее вычисления извлеките квадратный корень и возведенных в квадрат и сложенных длин двух других сторон (A и B) этой фигуры: C=√(A²+B²). Если же искомая сторона является катетом, квадратный корень извлекайте из разности между квадратами длин большей (гипотенузы) и меньшей (второго катета) сторон: C=√(A²-B²). Эти формулы вытекают из теоремы Пифагора.
2
Знание в качестве третьего параметра периметра треугольника (P) сводит задачу вычисления длины недостающей стороны (С) к простейшей операции вычитания - отнимите от периметра длины обеих (A и B) известных сторон фигуры: C=P-A-B. Эта формула следует из определения периметра, который является длиной ломаной линии, ограничивающей площадь фигуры.
3
Наличие в исходных условиях величины угла (γ) между сторонами (A и B) известной длины потребует для нахождения длины третьей (С) вычисления тригонометрической функции. Возведите обе длины сторон в квадрат и сложите результаты. Затем из полученного значения вычтите произведение их же длин на косинус известного угла, а в завершение извлеките из полученной величины квадратный корень: С = √(A²+B²-A*B*cos(γ)). Теорема, которую вы использовали в расчетах, называется теоремой синусов.
4
Известная площадь треугольника (S) потребует использования трех формул. Первая определяет площадь, как половину произведения длины известных сторон (A и B) на синус угла между ними. Выразите из нее синус угла, и вы получите выражение 2*S/(A*B). Вторая формула позволит выразить косинус того же угла: так как сумма квадратов синуса и косинуса одинакового угла равна единице, косинус равен корню из разницы между единицей и квадратом полученного ранее выражения: √(1-(2*S/(A*B))²). Третья формула - теорема косинусов - была использована в предыдущем шаге, замените в ней косинус полученным выражением и вы будете иметь такую формулу для расчета: С = √(A²+B²-A*B*√(1-(2*S/(A*B))²)).