Совет 1: Как вычислить площадь цилиндра

Цилиндр является пространственной фигурой и состоит из двух равных оснований, которые представляют собой круги и боковой поверхности, соединяющей линии, ограничивающие основания. Чтобы вычислить площадь цилиндра, найдите площади всех его поверхностей и сложите их.
Вам понадобится
  • линейка;
  • калькулятор;
  • понятие площади круга и длины окружности.
Инструкция
1
Определите площадь оснований цилиндра. Для этого измерьте при помощи линейки диаметр основания, затем поделите его на 2. Это будет радиус основания цилиндра. Вычислите площадь одного основания. Для этого возведите значение его радиуса в квадрат и умножьте на постоянную π, Sкр= π∙R², где R – радиус цилиндра, а π≈3,14.
2
Найдите общую площадь двух оснований, исходя из определения цилиндра, которое говорит о том, что его основания равны между собой. Площадь одного круга основания умножьте на 2, Sосн=2∙Sкр=2∙π∙R².
3
Вычислите площадь боковой поверхности цилиндра. Для этого найдите длину окружности, которая ограничивает одно из оснований цилиндра. Если радиус уже известен, то вычислите ее, умножив число 2 на π и радиус основания R, l= 2∙π∙R, где l – длина окружности основания.
4
Измерьте длину образующей цилиндра, которая равна длине отрезка, соединяющего соответствующие точки основания или их центры. В обычном прямом цилиндре образующая L численно равна его высоте H. Рассчитайте площадь боковой поверхности цилиндра, умножив длину его основания на образующую Sбок= 2∙π∙R∙L.
5
Вычислите площадь поверхности цилиндра, суммировав площадь оснований и боковой поверхности. S=Sосн+ Sбок. Подставив формульные значения поверхностей, получите S=2∙π∙R²+2∙π∙R∙L, вынесите общие множители S=2∙π∙R∙(R+L). Это позволит рассчитать поверхность цилиндра при помощи единой формулы.
6
Например, диаметр основания прямого цилиндра составляет 8 см, а его высота равна 10 см. Определите площадь его боковой поверхности. Вычислите радиус цилиндра. Он равен R=8/2=4 см. Образующая прямого цилиндра равна его высоте, то есть L=10 см. Для расчетов используйте единую формулу, это удобнее. Тогда S=2∙π∙R∙(R+L), подставьте соответствующие числовые значения S=2∙3,14∙4∙(4+10)=351,68 см².

Совет 2: Как вычислить высоту цилиндра

У цилиндра имеется высота, которая перпендикулярна двум его основаниям. Способ определения ее длины зависит от набора исходных данных. Таковыми могут быть, в частности, диаметр, площадь, диагональ сечения.
Инструкция
1
Для любых фигур существует такой термин, как высота. Высотой обычно называется измеряемая величина какой -либо фигуры в вертикальном положении. У цилиндра высота -это линия, перпендикулярная двум его параллельным основаниям. Также у него есть образующая. Образующая цилиндра -это линия, вращением которой получается цилиндр. Она, в отличие от образующей других фигур, например конуса, совпадает с высотой.

Рассмотрим формулу, с помощью которой можно найти высоту:

V=πR^2*H, где R - радиус основания цилиндра, H - искомая высота.

Если вместо радиуса дан диаметр, данная формула видоизменяется следующим образом:

V=πR^2*H=1/4πD^2*H

Соответственно, высота цилиндра равна:

H=V/πR^2=4V/D^2
2
Также высоту можно определить, исходя из диаметра и площади цилиндра. Существует площадь боковой и площадь полной поверхности цилиндра. Часть поверхности цилиндра, ограниченная цилиндрической поверхностью, называют боковой поверхностью цилиндра. Площадь полной поверхности цилиндра включает в себя и площадь его оснований.

Площадь боковой поверхности цилиндра вычисляется по следующей формуле:

S=2πRH

Преобразовав данное выражение, найдите высоту:

H=S/2πR

Если дана площадь полной поверхности цилиндра, вычисляйте высоту несколько иным способом. Площадь полной поверхности цилиндра равна:

S=2πR(H+R)

Вначале преобразуйте данную формулу как показано ниже:

S=2πRH+2πR

Затем найдите высоту:

H=S-2πR/2πR
3
Через цилиндр можно провести прямоугольное сечение. Ширина этого сечения будет совпадать с диаметрами оснований, а длина - с образующими фигуры, которые равны высоте. Если провести через это сечение диагональ, то можно легко заметить, что образуется прямоугольный треугольник. В данном случае диагональ является гипотенузой треугольника, катет -диаметром, а второй катет- высотой и образующей цилиндра. Тогда высоту можно найти по теореме Пифагора:

b^2 =sqrt (c^2 -a^2)
Видео по теме
Источники:
  • как посчитать площадь цилиндра
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500