Совет 1: Как построить уравнение регрессии

Важным этапом регрессионного анализа является построение математической функции, выражающей зависимость между явлением и различными признаками. Эту функцию называют уравнением регрессии
Вам понадобится
  • - калькулятор.
Инструкция
1
Уравнение регрессии – модель зависимости показателя результатов деятельности от влияющих на него факторов, выраженная в численной форме. Сложность его построения заключается в том, что из всего многообразия функций необходимо выбрать такую, которая наиболее полно и точно будет описывать изучаемую зависимость. Этот выбор делается либо на основании теоретических знаний об изучаемом явлении, либо опыте предыдущих аналогичных исследовании, либо с помощью простого перебора и оценки функций разных типов.
2
Существуют различные виды моделей функциональной зависимости. Наиболее распространенными являются линейная, гиперболическая, квадратическая, степенная, показательная и экспоненциальная.
3
Исходным материалом для составления уравнения являются значения показателей x и y, полученные в результате наблюдения. На их основе составляется таблица, в которой отражаются некоторые фактические значения фактора и соответствующие им значениях результативного признака y.
4
Проще всего построить уравнение парной регрессии. Оно имеет вид: y = ax+b. Параметр а - это так называемый свободный член. Параметр b – это коэффициентом регрессии. Он показывает, на какую величину в среднем изменяется результативный признак у при изменении факторного признака х на единицу.
5
Построение уравнения регрессии сводится к определению ее параметров. Они находятся с помощью метода наименьших квадратов, который представляет собой решение системы так называемых нормальных уравнений. В рассматриваемом случае параметры уравнения находятся по формулам: a = xср – bxср; b=((y×x)ср-yср×xср)/((x^2)ср – (xср)^2).
6
Если невозможно обеспечит равенство всех прочих условий при анализе влияния фактора, строят уравнение так называемой множественной регрессии. В этом случае в выбранную модель вводят другие факторные признаки, которые должны отвечать следующим параметрам: быть количественно измеримыми и находиться в функциональной зависимости. Тогда функция принимает вид:y = b+a1x1+a2x2+a3x3…anxn. Параметры этого уравнения находятся так же как и для уравнения парной.

Совет 2: Как составить уравнение регрессии

Как врач устанавливает диагноз? Он рассматривает совокупность признаков (симптомов), а затем принимает решение о болезни. На самом деле, он всего лишь делает определенный прогноз, опираясь на некоторую совокупность признаков. Эту задачу легко формализовать. Очевидно, что как установленные симптомы, так и диагнозы в какой-то мере случайны. Именно с такого рода первичных примеров начинается построение регрессионного анализа.
Инструкция
1
Основная задача регрессионного анализа - установление прогнозов о значении какой-либо случайной величины, на основе данных о другой величине. Пусть множество факторов, влияющих на прогноз случайная величина – Х, а множество прогнозов – случайная величина Y. Прогноз должен быть конкретным, то есть необходимо выбрать значение случайной величины Y=y. Это значение (оценка Y=y*) выбирается на основе критерия качества оценки (минимума дисперсии).
2
За оценку в регрессионном анализе принимают апостериорное математическое ожидание. Если плотность вероятности случайной величины Y обозначить p(y), то апостериорная плотность обозначается как p(y|X=x) или p(y|x). Тогда y*=M{Y|=x}=∫yp(y|x)dy (имеется виду интеграл по вcем значениям). Данная оптимальная оценка y*, рассматриваема как функция х, называется регрессией Y на X.
3
Любой прогноз может зависеть от множества факторов, возникает многофакторная регрессия. Однако в данном случае следует ограничиться однофакторной регрессией, помня, что в некоторых случаях набор прогнозов традиционен и может быть рассмотрен как единственный во всей своей совокупности (скажем утро – это восход солнца, окончание ночи, наивысшая точка росы, самый сладкий сон...).
4
Наиболее широкое распространение получила линейная регрессия y=a+Rx . Число R называется коэффициентом регрессии. Реже встречается квадратичная – y= с+bx + ax^2.
5
Определение параметров линейной и квадратичной регрессии можно осуществить с помощью метода наименьших квадратов, который основывается на требовании минимальной суммы квадратов отклонений табличной функции от аппроксимирующей величины. Его применение для линейной и квадратичной аппроксимаций приводит к системам линейных уравнений относительно коэффициентов (см. рис. 1а и 1b):
6
Проводить вычисления «вручную» крайне трудоемко. Поэтому придется ограничиться самым коротким примером. Для практической работы вам потребуется использовать программное обеспечение, предназначенное для расчета минимальной суммы квадратов, которого, в принципе, достаточно много.
7
Пример. Пусть факторы: х1=0, х2=5, х3=10. Прогнозы: y1=2,5, y2=11, y=23. Найти уравнение линейной регрессии. Решение. Составьте систему уравнений (см. рис. 1а) и решите его любым способом.3a+15R=36,5 и 15а+125R=285. R=2,23; a=3,286. y=3,268+2,23.
Обратите внимание
Замечание. Для установления линейной регрессии можно использовать корреляционный анализ.
Источники:
  • Пугачев В.С. Теория вероятностей и математическая статистика. – М., 1979, 496 c.
Источники:
  • построение парной регрессии
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500