Совет 1: Как найти вектор нормали

Задача поиска вектора нормали прямой на плоскости и плоскости в пространстве слишком проста. Фактически она завершается записью общих уравнений прямой или плоскости. Поскольку кривая на плоскости всего лишь частный случай поверхности в пространстве, то именно о нормалях к поверхности и пойдет речь.
Инструкция
1
Первый способ Этот способ самый простой, но для его понимания требуется знание понятия скалярного поля. Впрочем, и неискушенный в этом вопросе читатель сможет использовать результирующие формулы данного вопроса.
2
Известно, что скалярное поле f задается как f=f(x, y, z), а любая поверхность при этом – это поверхность уровня f(x, y, z)=C (C=const). Кроме того, нормаль поверхности уровня совпадает с градиентом скалярного поля в заданной точке.
3
Градиентом скалярно поля (функции трех переменных) называется вектор g=gradf=iдf/дx+jдf/дy+kдf/дz={дf/дx, дf/дy, дf/дz}. Так как длина нормали значения не имеет, остается лишь записать ответ. Нормаль к поверхностиf(x, y, z)-C=0 в точкеM0(x0, y0, z0) n=gradf=iдf/дx+jдf/дy+kдf/дz={дf/дx, дf/дy, дf/дz}.
4
Второй способ Пусть поверхность задана уравнением F(x, y, z)=0. Чтобы можно было в дальнейшем провести аналогии с первым способом, следует учитывать, что производная постоянной равна нулю, и F задается как f(x, y, z)-C=0 (C=const). Если провести сечение этой поверхности произвольной плоскостью, то возникшую пространственную кривую можно считать годографом какой-либо вектор-функции r(t)= ix(t)x+jy(t)+kz(t). Тогда производная вектора r’(t)= ix’(t)+jy’(t)+kz’(t) направлена по касательной в некоторой точке M0(x0, y0, z0) поверхности (см. рис.1).
5
Дабы не возникло путаницы, текущие координаты касательной прямой следует обозначить, например, курсивом (x, y, z). Канонические уравнение касательной прямой, с учетом, что r’(t0) – направляющий вектор, записывается как (x-x(t0))/(dx(t0)/dt)= (y-y(t0))/(dy(t0)/dt)= (z-z(t0))/(dz(t0)/dt).
6
Подставив координаты вектор-функции в уравнение поверхности f(x, y, z)-C=0 и продифференцировав по t вы получите (дf/дx)(дx/дt)+(дf/дy) (дy/дt)+(дf/дz)(дz/дt)=0. Равенство представляет собой скалярное произведение некоторого вектора n(дf/дx, дf/дy, дf/дz) и r’(x’(t), y’(t), z’(t)). Так как оно равно нулю, то n(дf/дx, дf/дy, дf/дz) и есть искомый вектор нормали. Очевидно, что результаты обоих способов идентичны.
7
Пример (имеет теоретическое значение). Найти вектор нормали к поверхности заданной классическим уравнением функции двух переменных z=z(x, y). Решение. Перепишите это уравнение в форме z-z(x, y)=F(x, y, z)=0. Следуя любому из предложных способов, получается, что n(-дz/дx, -дz/дy, 1) - искомый вектор нормали.

Совет 2: Как найти нормаль

Под математическим термином нормаль прячется более привычное на слух понятие перпендикуляра. То есть задача нахождения нормали подразумевает поиск уравнения прямой, перпендикулярной к заданной кривой или поверхности, проходящей через определенную точку. В зависимости от того, на плоскости или в пространстве требуется найти нормаль, данная задача решается по-разному. Рассмотрим оба варианта задачи.
Вам понадобится
  • умение находить производные функции, умение находить частные производные функции нескольких переменных
Инструкция
1
Нормаль к кривой, заданной на плоскости в виде уравнения у = f(x).Находим значение функции, которая определяет уравнение данной кривой в точке, в которой ищется уравнение нормали: а = f(x0). Находим производную к данной функции: f'(x). Ищем значение производной в этой же точке: B = f'(x0). Вычисляем значение следующего выражения: C = a – B*x0. Составляем уравнение нормали, которое будет иметь вид: у = B*x + C.
2
Нормаль к поверхности или кривой, заданной в пространстве в виде уравнения f = f(x,y,z).Находим частные производные к данной нам функции: f'x(x,y,z), f’y(x,y,z), f’z(x,y,z). Ищем значение этих производных в точке М(x0,y0,z0) – точка, в которой надо найти уравнение нормали к поверхности или пространственной кривой: A = f'x(x0,y0,z0), B = f’y(x0,y0,z0), C = f’z(x0,y0,z0). Составляем уравнение нормали, которое будет иметь вид: (x – x0)/A = (y – y0)/B = (z – z0)/C
3
Пример:
Найдем уравнение нормали к функции у = х – х^2 в точке х = 1.
Значение функции в данной точке а = 1 – 1 = 0.
Производная к функции у' = 1 – 2х, в данной точке В = у'(1) = -1.
Вычисляем С = 0 – (-1)*1 = 1.
Искомое уравнение нормали имеет вид: у = -х + 1
Видео по теме
Совет полезен?
Частные производные любой функции несложно найти, представив, что все переменные, кроме той которая является исследуемой – константы.
Источники:
  • Литература. Пискунов Н.С. Дифференциальное и интегральное исчисления. Учебник для ВТУЗов. Т.1.-М.: Наука, 1978.-456 с.
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500