Вам понадобится
  • - тетрадь;
  • - ручка
Инструкция
1
Если уравнение представлено в виде: dy/dx = q(x)/n(y), относите их к категории дифференциальных уравнений с разделяющимися переменными. Их можно решить, записав условие в дифференциалах по следующей схеме: n(y)dy = q(x)dx. Затем проинтегрируйте обе части. В некоторых случаях решение записывается в виде интегралов, взятых от известных функций. К примеру, в случае dy/dx = x/y, получится q(x) = x, n(y) = y. Запишите его в виде ydy = xdx и проинтегрируйте. Должно получиться y^2 = x^2 + c.
2
К линейным уравнениям относите уравнения «первой степени». Неизвестная функция с ее производными входит в подобное уравнение лишь в первой степени. Линейное дифференциальное уравнение имеет вид dy/dx + f(x) = j(x), где f(x) и g(x) – функции, зависящие от x. Решение записывается с помощью интегралов, взятых от известных функций.
3
Учтите, что многие дифференциальные уравнения - это уравнения второго порядка (содержащие вторые производные) Таким, например, является уравнение простого гармонического движения, записанное в виде общей формулы: md 2x/dt 2 = –kx. Такие уравнения имеют, в основном, частные решения. Уравнение простого гармонического движения является примером достаточно важного класса: линейных дифференциальных уравнений, у которых имеется постоянный коэффициент.
4
Рассмотрите более общий пример (второго порядка): уравнение, где у и z – являются заданными постоянными, f(x) – заданная функция. Подобные уравнения можно решить разными способами, к примеру, при помощи интегрального преобразования. Это же самое можно сказать и про линейные уравнения более высоких порядков, имеющих постоянные коэффициенты.
5
Примите к сведению, что уравнения, которые содержат неизвестные функции, а также их производные, стоящие в степени выше первой, называются нелинейными. Решения нелинейных уравнений достаточно сложны и поэтому, для каждого из них используется свой частный случай.