Совет 1: Как решать комбинаторные задачи

Данный вопрос можно рассмотреть как с точки зрения стандартных методов и подходов комбинаторики, так и с применением теории вероятности. Это позволяет несколько расширить кругозор, а также взглянуть на поставленную задачу с нестандартной точки зрения.
Инструкция
1
Как известно, вероятность простых событий определяется по классической формуле Р(А)=m/n, в которой число событий (исходов) конечно и равновозможно. При этом n - общее число исходов, а m – число благоприятных исходов (условию задачи). Теперь, необходимо рассмотреть три наиболее распространенные формулы комбинаторики: перестановки, сочетания и размещения.
2
ПерестановкиПредставьте себе, что на столе лежат пять карточек, на невидимой стороне которых написаны цифры: 1, 2, 3, 4 и 5. Произвольным образом, по одной, они вынимаются, переворачиваются и укладываются по очереди. Какова вероятность того, что извлеченная комбинация будет числом 12345?Количество благоприятных исходов m очевидно – m=1. В то время как всего вариантов n=5!=120, где «!» - знак факториала будет целых 120, а искомая вероятность данного события Р= 1/120, соответственно. В данном примере общее число исходов искали как число всевозможных перестановок пяти элементов по пяти позициям. Поэтому и в произвольном случае n элементов это число называют числом перестановок и обозначают Pn (Pn=n!)
3
СочетанияСледует рассмотреть следующий пример. В корзине находится некоторое количество шаров двух цветов, равное n. В такой постановке задачи, число сочетаний из n элементов по m называют множество способов, отличающихся друг от друга количеством шаров разного цвета в каждой комбинации. При этом n – общее число шаров (элементов), m – число элементов в извлеченной комбинации. Комбинации различны, если они отличаются хотя бы одним элементом. Обозначение числа сочетаний и формула для вычисления приведены на рисунке 1.
4
Предположительно, необходимо вычислить вероятность выигрыша в спортлото 6 из 49, где «угадано» 4 из 6-ти. Очевидно, что при этом используется формула для сочетания.Общее число исходов С (из 49 по 6)=49!/43!6! Благоприятное число исходов можно найти из следующих соображений. Имеется 6 «хороших» из общего количества 49 номеров. По вопросу задачи достаточно 4-х совпадений. Из 6-ти «хороших» 4 можно выбрать С (из 6 по 4) способами. При этом из оставшихся 43 «плохих» выбираются 2 для дополнения выбранной комбинации до шести элементов С (из 43 по2) способами. Звучит это следующим образом.
5
Число благоприятных ситуаций собирается как С (из 6 по 4) и С (из 37 по 2) (ситуация логического умножения). Значит m=С(из 6 по 4)∙С(из 43 по 2). Таким образом, вероятность даже самого «мизерного» выигрыша Р=m/n=С(из 6 по 4)∙С(из 43 по 2)/С(из 49 по 6)=(6!/2!4!)(43!/2!41!)/(49!/6!43!)=15*21*43/66*92*47*49=9*43/92*47*154=0,000347.
6
РазмещенияЕсли в задаче о сочетаниях учесть порядок следования элементов в выбранной комбинации из m элементов, то появится задача о размещениях. Вопрос, на основании которого принимается решением о применении формулы числа сочетаний должен добавочно (по сравнению с сочетаниями) содержать данные о необходимости учета порядка расположения элементов в выбираемых комбинациях. Если выбрано m элементов, то вычисляя число размещений необходимо число сочетаний умножить на число перестановок Pm=m!. Обозначение числа размещений и формулы для его вычисления даны на рис. 2.

Совет 2: Как решать задачи по комбинаторике

Решение задач на нахождение различных комбинаций представляет неподдельный интерес, а комбинаторика применяется во многих областях науки, например, в биологии для расшифровки кода ДНК или на спортивных соревнованиях для расчета количества игр между участниками.
Вам понадобится
  • калькулятор
Инструкция
1
Перестановки без повторений – это такие комбинации из n-го количества различных элементов, в которых количество элементов остается равным n, а порядок их меняется различными способами. P(n )= 1*2*3*…*n=n!Пример
Сколько перестановок можно составить из цифр 5,8,9? Из условия задачи n = 3 (три цифры 5,8,9). Воспользуемся формулой для расчета возможного количества перестановок без повторений: P_(n )= n!
Подставив в формулу n = 3, получим P= 3! = 1*2*3 = 6
2
Перестановки с повторениями – это такие комбинации из n-го количества элементов (в том числе и повторяющихся), в которых количество элементов остается равным n, а порядок их меняется различными способами.Рn = n!/n1!* n2!*…*nk!
где n – общее количество элементов, n1, n2…nk – количество повторяющихся элементов
3
Сочетания без повторений – это все возможные комбинации (группы) из n различных элементов по m в каждой группе (m?n), которые отличаются друг от друга только составом элементов (группы отличаются друг от друга хотя бы одним элементом).
С = n!/m!(n - m)!
4
Сочетания с повторениями – это все возможные комбинации (группы) из n различных элементов по m каждой группе (m – любое), причем допускается повторение одного элемента несколько раз (группы отличаются друг от друга хотя бы одним элементом)
С = (n + m – 1)!/m!(n-1)!
5
Размещения без повторений – это все возможные комбинации (группы) из n различных элементов по m в каждой группе (m?n), которые различаются между собой как составом элементов, входящих в группы, так и их порядком.
А = n!/(n – m)!
6
Размещения c повторениями – это все возможные комбинации (группы) из n различных элементов по m каждой группе (m – любое), которые различаются между собой как составом элементов, входящих в группы, так и их порядком, в которых также допускается повторение элементов.
А = n^m
Видео по теме
Видео по теме
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500