Совет 1: Как найти тангенс угла наклона

Под тангенсом угла наклона обычно понимают угловой коэффициент касательной прямой какой-либо функции. Однако вам может понадобиться также умение найти тангенс угла наклона обычной прямой, например, одной из сторон треугольника по отношению к другой. Определив, что вам надо найти, действуйте одним из следующих способов.
Инструкция
1
Если вам нужно посчитать угол наклона прямой к оси абсцисс, а вы не знаете уравнение прямой, опустите из любой точки этой прямой (кроме точки пересечения с осью) перпендикуляр на ось. Затем измерьте катеты полученного прямоугольного треугольника и найдите отношение прилежащего катета к противолежащему. Полученное число будет равно тангенсу угла наклона. Этот способ удобно использовать не только для изучения угла наклона прямой, но и для измерения любых углов, как на чертеже, так и в жизни (например, угол ската кровли).
2
Если вы знаете уравнение прямой, и вам нужно найти тангенс угла наклона этой прямой к оси абсцисс, выразите у через х. В результате вы получите выражение типа у=kх+b. Обратите внимание на коэффициент k – это и есть тангенс угла наклона между положительным направлением оси ох и лучом прямой, расположенным надо этой осью. Если же k=0, то тангенс также равен нулю, то есть прямая параллельна или совпадает с осью абсцисс.
3
Если вам дана сложная функция, например, квадратичная, и вам нужно найти тангенс угла наклона касательной к этой функции, или, по-другому, угловой коэффициент, вычислите производную. Затем вычислите значение производной в заданной точке, к которой будет проведена касательная. Полученное число и является тангенсом угла наклона касательной. Например, вам дана функция у=х^2+3х, посчитав ее производную, вы получите выражение у`=2х+3. Чтобы найти угловой коэффициент в точке х=3, подставьте это значение в уравнение. В результате несложных вычислений легко можно получить у=2*3+3=9, это и есть искомый тангенс.
4
Для того чтобы найти тангенс угла наклона одной из сторон треугольника к другой, поступите следующим образом. Найдите синус (sin) этого угла и разделите его на косинус (cos), в результате вы получите тангенс этого угла.

Совет 2: Что такое тангенс угла

Поведение тригонометрических функций легко проследить, наблюдая изменение положения точки на единичной окружности. А для закрепления терминологии удобно рассмотреть соотношение сторон в прямоугольном треугольнике.



Чтобы сформулировать определение тангенса угла и других тригонометрических функций, рассматривают соотношение углов и сторон в прямоугольном треугольнике.

Известно, что сумма углов любого треугольника равна 180°. Следовательно, в прямоугольном сумма двух непрямых углов равна 90°. Стороны, образующие прямой угол, называются катетами. Третья сторона фигуры — гипотенуза. Каждый из двух острых углов прямоугольного треугольника образован гипотенузой и одним катетом, который называется «прилежащим» для этого угла. Соответственно, другой катет называется «противолежащим».

Тангесом угла называется отношение противолежащего катета к прилежащему. Попутно легко запомнить, что обратное отношение называется котангенсом угла. Тогда тангенс одного острого угла прямоугольного треугольника равен котангенсу второго. Также очевидно, что тангенс угла равен отношению синуса этого угла к его косинусу.

Отношение сторон — величина, не имеющая размерности. Тангенс, как синус, косинус и котангенс - это число. Каждому углу соответствует единственное значение тангенса (синуса, косинуса, котангенса). Значения тригонометрических функций для любого угла можно найти в математических таблицах Брадиса.

Чтобы узнать, какие значения может принимать тангенс угла, начертите единичную окружность. При изменении угла от 0° до 90° тангенс изменяется от нуля и устремляется в бесконечность. Изменение функции нелинейное, на графике легко найти промежуточные точки для построения кривой: tg 45°=1, tg30°= 1/√3, tg60°=√3.

Для отрицательных углов тангенс от нуля устремляется в минус бесконечность. Тангенс — периодическая функция с разрывами при приближении значения аргумента (угла) к 90° и -90°.


Видео по теме
Источники:
  • как найти тангенс по углу
Поиск
Совет полезен?
Добавить комментарий к статье
Осталось символов: 500